CHAPTER2

Correlation: What Is It and
What Is It Good For?

What You’ll Learn

« Correlations tell us about the extent to which two features of the world tend to
occur together.

e In order to measure correlations, we must have data with variation in both
features of the world.

o Correlations can be potentially useful for description, forecasting, and causal
inference. But we have to think clearly about when they’re appropriate for each
of these tasks.

o Correlations are about linear relationships, but that’s not as limiting as you
might think.

Introduction

Correlation doesn't imply causation. That's a good adage. However, in our experience,
it’s less useful than it might be because, while many people know that correlation doesn't
imply causation, hardly anyone knows what correlation and causation are.

In part 1, we are going to spend some time establishing a shared vocabulary. Making
sure that we are all using these and a few other key terms to mean the same thing is
absolutely critical if we are to think clearly about them in the chapters to come.

This chapter is about correlation: what it is and what it’s good for. Correlation is the
primary tool through which quantitative analysts describe the world, forecast future
events, and answer scientific questions. Careful analysts do not avoid or disregard cor-
relations. But they must think clearly about which kinds of questions correlations can
and cannot answer in different situations.

What Is a Correlation?

The correlation between two features of the world is the extent to which they tend
to occur together. This definition tells us that a correlation is a relationship between
two things (which we call features of the world or variables). If two features of the world
tend to occur together, they are positively correlated. If the occurrence of one feature
of the world is unrelated to the occurrence of another feature of the world, they are
uncorrelated. And if when one feature of the world occurs the other tends not to occur,
they are negatively correlated.
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Table 2.1. Oil production and type of government.

Not Major Oil Producer Major Oil Producer Total
Democracy 118 9 127
Autocracy 29 11 =0
Total 147 20 167

What does it mean for two features of the world to tend to occur together? Lets start
with an example of the simplest kind. Suppose we want to assess the correlation between
two features of the world, and there are only two possible values for each one (we call
these binary variables). For instance, whether it is after noon or before noon is a binary
variable (by contrast, the time measured in hours, minutes, and seconds is not binary;

it can take many more than two values).

Political scientists and economists sometimes talk about the resource curse or the
paradox of plenty. The idea is that countries with an abundance of natural resources
are often less economically developed and less democratic than those with fewer nat-
ural resources. Natural resources might make a country less likely to invest in other
forms of development, or they might make a country more subject to violence and
autocracy.

To assess the extent of this resource curse, we might want to know the correla-
tion between natural resources and some feature of the economic or political system.
That process starts with collecting some data, which we've done. To measure natural
resources we looked at which countries are major oil producers. We classify a country
as a major oil producer if it exports more than forty thousand barrels per day per mil-
lion people. And for the political system we looked at which countries are considered
autocracies versus democracies by the Polity IV Project. Table 2.1 indicates how many
countries fit into each of the four possible categories: democracy and major oil pro-
ducer, democracy and not major oil producer, autocracy and major oil producer, and
autocracy and not major oil producer.

We can figure out if these two binary variables—being a major oil producer or not
and autocracy versus democracy—are correlated by making a comparison. For instance,
we could ask whether major oil producers are more likely to be autocracies than coun-
tries that aren’t major oil producers. Or, similarly, we could ask whether autocracies
are more likely to be major oil producers than democracies. If one of these statements
is true, the other must be true as well. And these comparisons tell us whether these
two features of the world—being a major oil producer and being an autocracy—tend to
occur together.

In table 2.1, oil production and autocracy are indeed positively correlated. Fifty-five
percent of major oil producers are autocracies ( % = .55) while only about 20 percent of

countries that aren't major oil producers are autocracies (13497 ~2.20). Equivalently, 27.5

percent of autocracies are major oil producers (% =.275), while only about 7 percent
of democracies are (13—7 ~2.07). In other words, major oil producers are more likely to
be autocracies than are countries that aren’t major oil producers, and then, necessarily,
autocracies are more likely to be major oil producers than democracies.

As a descriptive matter, we find this positive correlation interesting. It is also poten-
tially useful for prediction. Suppose there were some other countries outside our data
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Figure 2.1. Crime and temperature (in degrees Fahrenheit) in Chicago across days in 2018.

whose system of government we were uncertain of. Knowing whether or not they were
major oil producers would be helpful in predicting which kind of government they
likely have.

Such knowledge could even potentially be useful for causal inference. Perhaps new
oil reserves are discovered in a country and the State Department wants to know what
effect this is likely to have on the country’s political system. This kind of data might
be informative about that causal question as well. Though, as we'll discuss in great
detail in chapter 9, we must be very careful when giving correlations this sort of causal
interpretation.

We can assess correlations even when our data are such that it is hard to make a table
of all the possible combinations like we did above. Suppose, for example, that we want to
assess the relationship between crime and temperature in Chicago. We could assemble
a spreadsheet in which each row corresponds to a day and each column corresponds to
a feature of each day. We often call the rows observations and the features listed in the
columns variables. In this case, the observations are different days. One variable could
be the average temperature on that day as measured at Midway Airport. Another could
be the number of crimes reported in the entire city of Chicago on that day. Another still
could indicate whether the Chicago Tribune ran a story about crime on its front page on
that day. As you can see, variables can take values that are binary (front page story or
not), discrete but not binary (number of crimes), or continuous (average temperature).

We collected data like this for Chicago in 2018, and wed like to assess the correlation
between crime and temperature. But how can we assess the correlation between two

non-binary variables?
One starting point is to make a simple graph, called a scatter plot. Figure 2.1 shows

one for our 2018 Chicago data. In it, each point corresponds to an observation in our
data—here, that means each point is a day in Chicago in 2018. The horizontal axis of

our figure is the average temperature at Midway Airport on that day. The vertical axis
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Figure 2.2. A line of best fit summarizing the relationship between crime and temperature (in degrees
Fahrenheit) in Chicago across days in 2018.

is the number of crimes reported in the city on that day. So the location of each point
shows the average temperature and the amount of crime on a given day.

Just by looking at the figure, you can see that it appears that there is a positive corre-
lation between temperature and crime. Points to the left of the graph on the horizontal
axis (colder days) tend to also be pretty low on the vertical axis (lower crime days), and
days to right of the graph on the horizontal axis (warmer days) tend to also be pretty

high on the vertical axis (higher crime days).
But how can we quantify this visual first impression? There are actually many dif-

ferent statistics that we can use to do so. One such statistic is called the slope. Suppose
we found the line of best fit for the data. By best fit, we mean, roughly, the line that min-
imizes how far the data points are from the line on average. (We will be more precise
about this in chapter 5.) The slope of the line of best fit is one way of describing the
correlation between these two continuous variables.

Figure 2.2 shows the scatter plot with that line added. The slope of the line tells us
something about the relationship between those two variables. If the slope is negative,
the correlation is negative. If the slope is zero, temperature and crime are uncorrelated.
If the slope is positive, the correlation is positive. And the steepness of the slope tells us
about the strength of the correlation between these two variables. Here we see that they
are positively correlated—there tends to be more crime on warmer days. In particular,
the slopeis 3.1, so on average for every additional degree of temperature (in Fahrenheit),
there are 3.1 more crimes.

Notice that how you interpret the slope depends on which variable is on the verti-
cal axis and which one is on the horizontal axis. Had we drawn the graph the other
way around (as in figure 2.3), we would be describing the relationship between the
same two variables. But this time, we would have learned that for every additional
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Figure 2.3. A line of best fit summarizing the relationship between temperature and crime in Chicago
across days in 2018.

reported crime, on average, the temperature is 0.18 degrees higher. The sign of the
slope (positive or negative) is the same regardless of which variable is on the horizon-
tal or vertical axis because changing which variable is on which axis does not change
whether they are positively or negatively correlated. But the actual number describing
the slope and its substantive interpretation—that is, what it says about the world—has
changed.

Fact or Correlation?

In order to establish whether a correlation exists, you must always make a compari-
son of some kind. For example, to learn about the correlation between temperature and
crime, we need to compare hot and cold days and see whether the levels of crime differ,
or alternatively, we can compare high- and low-crime days to see if their temperatures
differ. This means that to assess the correlation between two variables, we need to have
variation in both variables. For example, if we collected data only on days when the
average temperature was 0 degrees, we would have no way of assessing the correlation
between temperature and crime. And the same is true if we only examined days with
five hundred reported crimes.

With this in mind, let’s pause to check how clearly you are thinking about what a
correlation is and how we learn about one. Don't worry if you aren’t all the way there
yet. Understanding whether a correlation exists turns out to be tricky. We are going to
spend all of chapter 4 on this topic. Nonetheless, it is helpful to do a preliminary check
now. So let’s give it a try.

Think about the following statements. Which ones describe a correlation, and which
ones do not?
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1. People who live to be 100 years old typically take vitamins.

2. Cities with more crime tend to hire more police officers.

3. Successful people have spent at least ten thousand hours honing their cratt.
4. Most politicians facing a scandal win reelection.

5. Older people vote more than younger people.

While each of these statements reports a fact, not all of those facts describe a cor-
relation—that is, evidence on whether two features of the world tend to occur together.
In particular, statements 1, 3, and 4 do not describe correlations, while statements 2 and
5 do. Let’s unpack this.

Statements 1, 3, and 4 are facts. They come from data. They sound scientific. And
if we added specific numbers to these statements, we could call them statistics. But not
all facts or statistics describe correlations. The key issue is that these statements do not
describe whether or not two features of the world tend to occur together—that is, they
do not compare across different values of both features of the world.

To get a sense of this, focus on statement 4:

Most politicians facing a scandal win reelection.

Two features of the world are discussed. The first is whether a politician is facing a
scandal. The second is whether the politician successfully wins reelection. The corre-
lation being hinted at is a positive correlation between facing a scandal and winning
reelection. But we don't actually learn from this statement of fact whether those two
features of the world tend to occur together—that is, we have not compared the rate of
reelection for those facing scandal to the rate of reelection for those not facing scandal.

We can assess this correlation, but not with the data described in statement 4. To
assess the correlation, wed need variation in both variables—facing a scandal and
winning reelection. Just for fun, let's examine this correlation in some real data on
incumbent members of the U.S. House of Representatives seeking reelection between
2006 and 2012. Scott Basinger from the University of Houston has systematically col-
lected data on congressional scandals. Utilizing his data, let’s see how many cases fall
into four relevant cases: members facing a scandal who were reelected, members fac-
ing a scandal who were not reelected, scandal-free members who were reelected, and
scandal-free members who were not reelected.

In table 2.2, we see that statement 4 is indeed a fact: 62 out of 70 (about 89%) members
of Congress facing a scandal who sought reelection won. But we also see that most
members of Congress not facing a scandal won reelection. In fact, 1,192 out of 1,293
(about 92%) of these scandal-free members won reelection. By comparing the scandal-
plagued members to the scandal-free members, we now see that there is actually a slight
negative correlation between facing a scandal and winning reelection.

Table 2.2. Most members of Congress facing a scandal are reelected, but scandal
and reelection are negatively correlated.

No Scandal Scandal Total

Not Reelected 101 8 109
Reelected 1,192 62 1,254
Total 1,293 70 1,363
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We hope it is now clear why statement 4 does not convey enough information to
know whether or not there is a correlation between scandal and reelection. The prob-
lem is that the statement is only about politicians facing scandal. It tells us that more of
those politicians win reelection than lose. But to figure out if there is a correlation bet-
ween scandal and winning reelection, we need to compare the share of politicians facing
a scandal who win reelection to the share of scandal-free politicians who win. Had only
85 percent of the scandal-free members of Congress won reelection, there would be a
positive correlation between scandal and reelection. Had 89 percent of them won, there
would have been no correlation. But since we now know the true rate of reelection for
scandal-free members was 92 percent, we see that there is a negative correlation. A sim-
ilar analysis would show that statements 1 and 3 also don't convey enough information,
on their own, to assess a correlation.

Statements 2 and 5 do describe correlations. Both statements make a comparison.
Statement 2 tells us that cities with more crime have, on average, larger police forces
than cities with less crime. And statement 5 tells us that older people tend to vote at
higher rates than younger people. In both cases, we are comparing differences in one
variable (police force size or voting rates) across differences in the other variable (crime
rates or age). This is the kind of information you need to establish a correlation.

As we said at the outset, don’t worry if you feel confused. Thinking clearly about what
kind of information is necessary to establish a correlation, as opposed to just a fact, is
tricky. We are going to spend chapter 4 making sure you really get it.

What Is a Correlation Good For?

Now that we have a shared understanding of what a correlation is, let’s talk about
what a correlation is good for. We've noted that correlations are perhaps the most impor-
tant tool of quantitative analysts. But why? Broadly speaking, it's because correlations
tell us what we should predict about some feature of the world given what we know
about other features of the world.

There are at least three uses for this kind of knowledge: (1) description, (2) forecast-
ing, and (3) causal inference. Any time we make use of a correlation, we want to think
clearly about which of these three tasks were attempting and what has to be true about
the world for a correlation to be useful for that task in our particular setting.

Description

Describing the relationships between features of the world is the most straightfor-
ward use for correlations.

Why might we want to describe the relationship between features of the world? Sup-
pose you were interested in whether younger people are underrepresented at the polls
in a particular election, relative to their size in the population. A description of the rela-
tionship between age and voting might be helpful. Figure 2.4 shows a scatter plot of data
on age and average voter turnout for the 2014 U.S. congressional election. In this figure,
an observation is an age cohort. For each year of age, the figure shows the proportion
of eligible voters who turned out to vote.

The figure also plots the line that best fits the data. This line has a slope of 0.006. In
other words, on average, for every additional year of age, the chances that an individual
turned out to vote in 2014 increases by 0.6 percentage points. So younger people do
indeed appear to be underrepresented, as they turn out at lower rates than older people.
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Figure 2.4. Voter turnout and age in the 2014 election.

This kind of descriptive analysis may be interesting in and of itself. It's important
to know that younger people were less likely than older people to vote in 2014 and
were therefore underrepresented in the electoral process. That relationship may inform
how you think about the outcome of that election. Moreover, knowledge of this cor-
relation might motivate you to further investigate the causes and consequences of the
phenomenon of younger people turning out at low rates.

Of course, this descriptive relationship need not imply that these younger people
will continue to vote at lower rates in future elections. So you can’t necessarily use this
knowledge to forecast future voter turnout. And it also doesn't mean that these younger
people will necessarily become more likely to vote as they age. So you probably cant
interpret this relationship causally. This descriptive analysis just tells us that older peo-
ple were more likely to vote than younger people, on average, in the 2014 election. To
push the interpretation further, youd need to be willing to make stronger assumptions
about the world, which we will now explore.

Forecasting

Another motivation for looking at correlations is forecasting or prediction—two
terms that we will use interchangeably. Forecasting involves using information from
some sample population to make predictions about a different population.

For instance, you might be using data on voters from past elections to make pre-
dictions about voters in future elections. Or you might be using the voters in one state
to make predictions about voters in another state. Suppose you're running an electoral
campaign, you have limited resources, and you're trying to figure out which of your sup-
porters you should target with a knock on the door reminding them to turn out to vote.
If you were already highly confident that an individual was going to vote in the absence
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of your intervention, you wouldn't want to waste your volunteers’ time by knocking on
that door. So accurate forecasting of voter turnout rates could improve the efficiency of
your campaign.

Correlations like the one above regarding age and voter turnout could be useful for
this kind of forecasting. Since age is strongly correlated with turnout, it might be a useful
variable for forecasting who is and is not already likely to vote. For instance, if you were
able to predict, on the basis of age, that some group of voters is virtually certain to turn
out even without your campaign efforts, you might want to focus your mobilization
resources on other voters.

To use the correlation between age and voter turnout for forecasting in this way, you
don't need to know why they are correlated. But, unlike if you just want to describe the
relationship between age and voter turnout in the 2014 election, if you want to forecast,
you need to be willing to make some additional assumptions about the world.

This raises two important concerns that you must think clearly about in order to use
correlation for forecasting responsibly. The first is whether the relationship you found in
your sample is indicative of a broader phenomenon or whether it is the result of chance
variation in your data. Answering this question requires statistical inference, which is the
topic of chapter 6. Second, even if you are convinced that you've found a real relation-
ship in your sample, you'll want to think about whether your sample is representative
of the population about which you are trying to make predictions. We will explore rep-
resentativeness in greater detail in our discussion of samples and external validity in
chapters 6 and 16.

Let’s go back to using age and voter turnout from one election to make predictions
about another election. Doing so only makes sense if it is reasonable to assume that the
relationship between these two variables isn't changing too quickly. That is, the corre-
lation between age and voter turnout in, for example, the 2014 election would only be
useful for figuring out which voters to target in the 2016 election if it seems likely that
the relationship between age and turnout in 2016 will be more or less the same as the
relationship between age and turnout in 2014. Similarly, if you only had data on age and
voter turnout in the 2014 election for twenty-five states, you might use the correlation
between age and turnout in those states to inform a strategy in the other twenty-five
states. But this would only be sensible if you had reason to believe that the relationship
between age and turnout was likely to be similar in the states on which you did and did
not have data.

Youd also want to take care in making predictions beyond the range of available data.
Our data tell us voter turnout rates for voters ages 18-88. Lines, however, go on forever.
So the line of best fit gives us predictions for any age. But we should be careful extrap-
olating our predictions about voter turnout to, say, 100-year-olds, since we don't have
any data for them, so we can't know whether the relationship described by the line is
likely to hold for them or not, even for the 2014 election. And we can be sure the lines
predictions for turnout by 10-year-olds won’t be accurate—they aren't even allowed
to vote.

Relatedly, when using some statistic, like the slope of a line of best fit, to do predic-
tion, we need to think about whether the relationship is actually linear. If not, a linear
summary of the relationship might be misleading. We'll discuss this in greater detail
below.

It is worth noting that, in practical applications, it would be unusual to try to do
forecasting simply using the correlation between two variables. One might, instead, try
to predict voter turnout using its relationship with a host of variables like gender, race,
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income, education, and previous voter turnout. We'll discuss such multivariable and
conditional correlations in chapter 5.

Using data for forecasting and prediction is a rapidly growing area for analysts in
policy, business, policing, sports, government, intelligence, and many other fields. For
instance, suppose youre running your city’s public health department. Every time you
send a health inspector to a restaurant, it costs time and money. But restaurant viola-
tions of the health code do harm to your city’s residents. Therefore, you would very
much like to send inspectors to those restaurants that are most likely to be in violation
of the health codes, so as not to waste time and money on inspections that don't end up
improving public safety. The more accurately you can forecast which restaurants are in
violation, the more eftectively you can deploy your inspectors. You could imagine using
data on restaurants that did and did not violate health codes in the past to try to pre-
dict such violations on the basis of their correlation with other observable features of a
restaurant. Plausibly useful restaurant features might include Yelp reviews, information
about hospital visits for food poisoning, location, prices, and so on. Then, with these
correlations in hand, you could use future Yelp reviews and other information to predict
which restaurants are likely in violation of the health codes and target those restaurants
for inspection.

This example points to another tricky issue. The very act of using correlations for
prediction can sometimes make correlations that held in the past cease to hold in the
future. For instance, suppose the health department observes a strong correlation bet-
ween restaurants that are open twenty-four hours a day and health code violations. On
the basis of that correlation, they might start sending health inspectors disproportion-
ately to twenty-four-hour restaurants. A savvy restaurant owner who becomes aware of
the new policy might adapt to fool the health department, say closing from 2:00 to 3:00
a.m. every night. This small change in operating hours would presumably do nothing to
clean up the restaurant. But the manager would have gamed the system, rendering pre-
dictions based on past data inaccurate for the future. We'll discuss this general problem
of adaptation in greater detail in chapter 16.

Forecasting would also be useful to a policy maker who would like to know the
expected length of an economic downturn for budgetary purposes, a banker who wants
to know the credit worthiness of potential borrowers, or an insurance company that
wants to know how many car accidents a potential client is likely to get in this year. The
managers of our beloved Chicago Bears would love to predict which college football
players could be drafted to increase the team's chances of winning a Super Bowl. But
given their past track record, we don't hold out much hope. Data can’t work miracles.

It is also worth thinking about the potential ethical implications of using predic-
tions to guide behavior. For instance, research finds that consumer complaints about
cleanliness in online restaurant reviews are positively correlated with health code vio-
lations. This is potentially useful predictive information—governments could use data
collected from review sites to figure out where to send restaurant inspectors. In response
to such findings, an article in The Atlantic declared, “Yelp might clean up the restau-
rant industry.” But a study by Kristen Altenburger and Daniel Ho shows that online
reviewers are biased against Asian restaurants—comparing restaurants that received
the same score from food-safety inspectors, they find that reviewers were more likely
to complain about cleanliness in the Asian restaurants. This means that if governments
make use of the helpful predictive correlation between online reviews and health code
violations, it will inadvertently discriminate against Asian restaurants by disproportion-
ately targeting them for inspection. Do you want your government to make use of such
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information? Or are there ethical or social costs of targeting restaurants for inspection
in an ethnically biased way that outweigh the benefits of more accurate predictions? We
will return to some of these ethical issues at the end of the book.

Causal Inference

Another reason we might be interested in correlations is to learn about causal rela-
tionships. Many of the most interesting questions that quantitative analysts face are
inherently causal. That is, they are about how changing some feature of the world would
cause a change in some other feature of the world. Would lowering the cost of col-
lege improve income inequality? Would implementing a universal basic income reduce
homelessness? Would a new marketing strategy boost profits? These are all causal ques-
tions. As we'll see throughout the book, using correlations to make inferences about
causal relationships is common. But it is also fraught with opportunities for unclear
thinking. (Understanding causality will be the subject of the next chapter.)

Using correlation for causal inference has all the potential issues we just discussed
when thinking about using correlation for prediction and there are new issues. The key

one is that correlation need not imply causation. That is, a correlation between two
features of the world doesn't mean one of them causes the other.

Suppose you want to know the effect of high school math training on subsequent
success in college. This is an important question if you're a high school student, a parent
or counselor of a high school student, or a policy maker setting educational standards.
Will high school students be more likely to attend and complete college if they take
advanced math in high school?

As it turns out, the correlation between taking advanced math and completing col-
lege is positive and quite strong—for instance, people who take calculus in high school
are much more likely to graduate from college than people who do not. And the cor-
relation is even stronger for algebra 2, trigonometry, and pre-calculus. But that doesn't
mean that taking calculus causes students to complete college.

Of course, one possible source of this correlation is that calculus prepares students for
college and causes them to become more likely to graduate. But that isn’t the only pos-
sible source of this correlation. For instance, maybe, on average, kids who take calculus
are more academically motivated than kids who don’t. And maybe motivated kids are
more likely to complete college regardless of whether or not they take calculus in high
school. If that is the case, we would see a positive correlation between taking calculus
and completing college even if calculus itself has no effect on college completion. Rather,
whether a student took calculus would simply be an indirect measure of motivation,
which is correlated with completing college.

What's at stake here? Well, if the causal story is right, then requiring a student to
take calculus who otherwise wouldn't will help that student complete college by offering
better preparation. But if the motivation story is right, then requiring that student to
take calculus will not help with college completion. In that story, calculus is just an
indicator of motivation. Requiring a student to take calculus does not magically make
that student more motivated. It could even turn out that requiring that student to take
calculus might impose real costs—in terms of self-esteem, motivation, or time spent on
other activities—without any offsetting benefits.

The exact mistake we just described was made in a peer-reviewed scientific article.
The researchers compared the college performance of people who did and did not take a
variety of intensive high school math courses. On the basis of a positive correlation, they
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suggested that high school counselors “use the results of this study to inform students
and their parents and guardians of the important role that high school math courses
play with regard to subsequent bachelor’s degree completion.” That is, they mistook
correlation for causation. On the basis of these correlations, they recommended that
students who were not otherwise planning to do so should enroll in intensive math
courses to increase their chances of graduating from college.

We'll return to the problem of mistaking correlation for causation in part 3. For now,
you should note that, although purported experts do it all the time, in general, it is
wrong to infer causality from correlations.

Measuring Correlations

There are several common statistics that can be used to describe and measure the
correlation between variables. Here we discuss three of them: the covariance, the corre-
lation coefficient, and the slope of the regression line. But before going through these
three different ways of measuring correlations, we need to talk about means, vari-
ances, and standard deviations—statistics that help us summarize and understand
variables.

Mean, Variance, and Standard Deviation

Let’s focus on our Chicago crime and temperature data. Recall that in this data set,
each observation is a day in 2018. And for each day we observe two variables, the num-
ber of reported crimes and the average temperature as measured in degrees Fahrenheit
at Midway Airport. We aren't going to reproduce the entire data set here, since it has
365 rows (one for each day of 2018). Table 2.3 shows what the data looks like for the
month of January. For the remainder of this discussion, we will treat the days of January
2018 as our population of interest.

For any observation i, call the value of the crime variable crime; and the value of the
temperature variable temperature;. In our data table, i can take any value from 1 through
31, corresponding to the thirty-one days of January 2018. So, for instance, the temper-
ature on January 13 was temperature;3 = 12.3, and the number of crimes reported on
January 24 was crimez4 = 610.

A variable has a distribution—a description of the frequency with which it takes dif-
ferent values. We often want to be able to summarize a variable’s distribution with a few
key statistics. Here we talk about three of them.

It will help to have a little bit of notation. The symbol )  (the upper-case Greek letter

sigma) denotes summation. For example, Z?il crime; is the sum of all the values of the

crime variable from day 1 through day 31. To find it, you take the values of crime for
day 1, day 2, day 3, and so on through 31 and sum (add) them together. That is, you add
up crime; = 847 and crime; = 555 and crime3 = 568 and so on through crimes; = 708.
You find these specific values for the crime variable on each day by referring back to the
data in table 2.3.

Now we can calculate the mean of each variables distribution. (Sometimes this is
just called the mean of the variable, leaving reference to the distribution implicit). The
mean is denoted by u (the Greek letter mu). The mean is just the average. We find it by
summing the values of the observations (which we now have convenient notation for)
and dividing by the number of observations. For January 2018, the means of our two
variables are



Table 2.3. Average temperature at Chicago Midway
Airport and number of crimes reported in Chicago

for each day of January 2018.
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Mean
Variance

Standard deviation
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Temperature (°F)
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14.2
6.3
5.4
7.5

254

33.9

30.1

44.9

AL/

21.6

12.3

15.7

16.8

14.6

14.7

25.6

34.8

40.4

42.9

48.9

32.3

29.2

35.5

46.0

45.6

35.0

25.2

24.7

37.6

26.3

220.3

14.8

Crimes

847
555
568
600
660
585
535
618
653
709
698
705
617
563
528
612
644
621
707
724
716
722
716
610
640
759
754
668
650
632
708

655.6
5183.0

72.0
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}:,3;1 crime; 847 +4555+4..-4708
Hcrime = TR N = o R 655.6

and

Z?il temperature; —2.7+—0.9+4 ..+ 37.6

- = =26.3.
Htemperature 31 31

A second statistic of interest is the variance, which we denote by o# (the lower-case
Greek letter sigma, squared). We'll see why it is squared in a moment. The variance is a
way of measuring how far from the mean the individual values of the variable tend to
be. You might even say that the variance measures how variable the variable is. (You can
also think of it, roughly, as a measure of how spread out the variable’s distribution is.)

Here's how we calculate the variance. Suppose we have some variable X (like crime or
temperature). For each observation, calculate the deviation of that observation's value
of X from the mean of X. So, for observation i, the deviation is the value of X for obser-
vation i (X;) minus the mean value of X across all observations (uy)—that is, X; — x.
On January 13, 2018, the temperature was 12.3 degrees Fahrenheit. The mean temper-
ature in January 2018 was 26.3 degrees Fahrenheit. So January 13’s deviation from the
January mean was 12.3 — 26.3 = —14. That is, January 13, 2018, was fourteen degrees
colder than the average day in January 2018. By contrast, the deviation of January 23,
2018, was 32.3 — 26.3 = 6. On January 23, it was six degrees warmer than on the average
day in January 2018.

Note that these deviations can be positive or negative since observations can be larger
or smaller than the mean. But for the purpose of measuring how variable the observa-
tions are, it doesn't matter whether any given deviation is positive or negative. We just
want to know how far each observation is from the mean in any direction. So we need to
transform the deviations into positive numbers that just measure the distance from the
mean rather than the sign and distance. To do this, we could look at the absolute value
of the deviations. But for reasons we'll discuss later, we typically make the deviations

positive by squaring them instead. The variance is the average value of these squared
deviations. So, if there are N observations (in our data, N = 31) the variance is

SN (X; — px)?

2538
Ux— N

For the two variables in our data, the variances are

3 :
2 = Ziz.l-l (crime; — l‘crime)2
Ocrime =
31
(847 — 655.6)% + (555 — 655.6)% + - - - + (708 — 655.6)2
e —————— 25183
31
and
3]
2 »_i—; (temperature; — Mtemperature)2
Jtemperatire = v et i A TR VI e T

 (=2.7-26.3)*+(=0.9 — 26.3)* + - - - + (37.6 — 26.3)?
&8 31

~ 220.3.



Correlation

By focusing on the average of the squared deviations rather than on the average of
the absolute value of the deviations, the variance is putting more weight on observations
that are farther from the mean. If the richest person in society gets richer, this increases
the variance in wealth more than if a moderately rich person gets richer by the same

amount. For example, suppose the average wealth is 1. If someone with a wealth of 10

. . . . 2 —— 2 . .
gains 1 more unit of wealth, the variance increases by ° 5 2 = %. But if someone with

a wealth of 100 gains one more unit of wealth, the variance increases by '0021\%9 ¥ — 11(’:79.

The variance is a fine measure of how variable a variable is. But since we've squared
everything, there is a sense in which it is not measured on the same scale as the variable
itself. Sometimes we want a measure of variability that is on that same scale. When that
is the case, we use the standard deviation, which is just the square root of the variance.

We denote the standard deviation by o (the lower-case Greek letter sigma):

N X i —=111%)2
0X=@=V_2<_Nfﬂ,

The standard deviation—which is also a measure of how spread out a variable’s dis-
tribution is—roughly corresponds to how far we expect observations to be from the
mean, on average. Though, as we've noted, compared to the average absolute value of

the deviations, it puts extra weight on observations that are farther from the mean.
For the two variables in our data, the standard deviations are

3] :
Zi=l (crime; — icrime)?

Ocrime =
crime 3]
 [(847 — 655.6)2 + (555 — 655.6)2 + - - - + (708 — 655.6)2 _ -
31 P
and
31
2_;i—1 (temperature; — N«temperature)2
Otemperature = e ive. A0t S AR 3] [ R lntinh) &
G275 26:3) 2 1 (0:95526.3 ) SRR (37,61=26.3) 558 i

31

Now that we understand what a mean, variance, and standard deviation are, we can
discuss three important ways in which we measure correlations: the covariance, the
correlation coefficient, and the slope of the regression line.

Covariance

Suppose we have two variables, like crime and temperature, and we want to measure
the correlation between them. One way to do this would be to calculate their covariance
(denoted cov). To keep our notation simple, let’s call those two variables X and Y. And
let’s assume we have a population of size N.

27
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Heres how you calculate the covariance. For every observation, calculate the
deviations—that is, how far the value of X is from the mean of X and how far the value
of Y is from the mean of Y. Now, for each observation, multiply the two deviations

together, so you have (X; — ux)(Y; — iy) for each observation i. Call this the product
of the deviations. Finally, to find the covariance of X and Y, calculate the average value

of this product:

cov (X, 1) = iz &i = O (Yi = )
N

Let’s see that the covariance is a measure of the correlation. Consider a particu-
larly strong version of positive correlation: suppose whenever X is bigger than average
(X; — mux > 0), Y is also bigger than average (Y; — wy > 0), and whenever X is smaller
than average (X; — ux <0), Y is also smaller than average (Y; — iy < 0). In this case,
the product of the deviations will be positive for every observation—either both devi-
ations will be positive, or both deviations will be negative. So the covariance will be
positive, reflecting the positive correlation. Now consider a particularly strong version
of negative correlation: suppose whenever X is bigger than average, Y is smaller than
average, and whenever X is smaller than average, Y is bigger than average. In this case,
the product of the deviations will be negative for every observation—one deviation is
always negative and the other always positive. So the covariance will be negative, reflect-
ing the negative correlation. Of course, neither of these extreme cases has to hold. But if
a larger-than-average X usually goes with a larger-than-average Y, then the covariance
will be positive, reflecting a positive correlation. If a larger-than-average X usually goes
with a smaller-than-average Y, then the covariance will be negative, reflecting a nega-
tive correlation. And if the values of X and Y are unrelated to each other, the covariance
will be zero, reflecting the fact that the variables are uncorrelated.

Correlation Coefficient

While the meaning of the sign of the covariance is clear, its magnitude can be a
bit hard to interpret, since the product of the deviations depends on how variable the
variables are. We can get a more easily interpretable statistic that still measures the
correlation by accounting for the variance of the variables.

The correlation coefficient (denoted corr) is simply the covariance divided by the
product of the standard deviations:

cov(X,Y)
OxXOy

corr (X, Y) =

When we divide the covariance by the product of the standard deviations, we are nor-
malizing things. That is, the covariance could, in principle, take any value. But the
correlation coefficient always takes a value between —1 and 1. A value of 0 still indi-
cates no correlation. A value of 1 indicates a positive correlation and perfect linear
dependence—that is, if you made a scatter plot of the two variables, you could draw a
straight, upward-sloping line through all the points. A value of —1 indicates a negative
correlation and perfect linear dependence. A value between 0 and 1 indicates positive
correlation but not a perfect linear relationship. And a value between —1 and 0 indicates
negative correlation but not a perfect linear relationship.
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The correlation coefhicient is sometimes denoted by the letter r. And we also some-
times square the correlation coefficient to compute a statistic called r-squared or rZ.
This statistic always lies between 0 and 1.

One potentially attractive feature of the r* statistic is that it can be interpreted as a
proportion. It's often interpreted as the proportion of the variation in Y explained by
X or, equivalently, the proportion of X explained by Y. As we'll discuss in later chap-
ters, the word explained can be misleading here. It doesn't mean that the variation in
X causes the variation in Y or vice versa. It also doesn't account for the possibility that
this observed correlation might have arisen by chance rather than reflecting a genuine
phenomenon in the world.

Slope of the Regression Line

One potential concern with the correlation coefficient and the r* statistic is that
they don't tell you anything about the substantive importance or size of the relation-
ship between X and Y. Suppose our two variables of interest are crime and temperature
in Chicago. A correlation coefhicient of .8 tells us that there is a strong, positive relation-
ship between the two variables, but it doesn’t tell us what that relationship is. It could be
that every degree of temperature corresponds with .1 extra crimes, or it could be that
every degree of temperature corresponds with 100 extra crimes. Both are possible with
a correlation coefhicient of .8. But they mean very different things.

For this reason, we don't spend much time thinking about these ways of measuring
correlation. We typically focus on the slope of a line of best fit, as we've already shown
you. Moreover, we tend to focus on one particular way of defining which line fits best.
Remember, a line of best fit minimizes how far the data points are from the line on
average. We typically measure how far a data point is from the line with the square of
the distance from the data point to the line (so every value is positive, just like with
squaring deviations). We focus on the line of best fit that minimizes the sum of these
squared distances (or the sum of squared errors). This particular line of best fit is called
the ordinary least squares (OLS) regression line, and usually, when someone just says
regression line, they mean OLS regression line. All the lines of best fit we drew earlier in
this chapter were OLS regression lines.

The slope of the regression line, it turns out, can be calculated from the covariance
and variance. The slope of the regression line (also sometimes called the regression
coefficient) when Y is on the vertical axis and X is on the horizontal axis is

cov(X,Y)
o8 &
This number tells us, descriptively, how much Y changes, on average, as X increases by
one unit. Had we divided by o' instead of o'z, then it would tell us how much X changes,
on average, as Y increases by one unit. As we've seen, those can be different numbers.
We'll spend a lot more time on regression lines in chapters 5 and 10.

Populations and Samples

Before moving on, there is one last issue that is worth pausing to highlight. We can
think about each of the statistics we've talked about—the mean, the variance, the covari-
ance, the correlation coefficient, the slope of the regression line—in two ways. There
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is a value of each of those statistics that corresponds to the whole population we are
interested in. And there is a value of those statistics that corresponds to the sample of
data we might happen to have. Either value can be of interest, but they can be impor-
tantly different. We have avoided that issue here by focusing on a case where our data
and our population are the same—we have crime and temperature for every day in Jan-
uary 2018, which we've treated as our population and our sample. But this won't always
be the case. For instance, we might have been interested in the relationship between
crime and temperature in January over many years but only had a sample of data for
the year 2018. This would give rise to all sorts of questions about what we can learn
about January 2019 or January 1918 from our 2018 data. We will revisit these issues in

chapter 6.

Straight Talk about Linearity

All of the various ways of measuring correlations that we have discussed focus on
assessing linear relationships between variables. We will delve into this topic in more
detail later on, especially in chapter 5 when we return to the topic of age and voter
turnout in the context of our discussion of regression. But for now we will note that
linear relationships are often interesting and important, but not all interesting and
important relationships are linear. Consider, for example, the two possible relationships
between the variables X and Y illustrated in figure 2.5.

As the regression lines make clear, in both these figures, the correlation between X
and Y is 0. But these relationships are clearly different, just not in a way that is captured
by the regression line.

In the left panel, there is no correlation between X and Y and there also doesn't seem
to be any interesting relationship of any kind. You really can't predict the value of Y from
X or vice versa. In the right panel, there is also no correlation between X and Y—on
average, high values of X don't tend to occur with high values of Y, nor do low values of
X tend to occur with low values of Y. But there is certainly a relationship between these
two variables. In fact, X is quite useful in predicting Y in the right panel. This teaches
us a lesson. Clear thinking about data requires more than just computing correlations.
Among other things, it is important to look at your data (e.g., with scatter plots like
these), lest you miss interesting nonlinear relationships.

There are lots of statistical approaches for dealing with non-linearity, and we’ll dis-
cuss some of them in this book. But, as it turns out, linear tools for describing data can
still be useful, even when the variables are related in a non-linear way. For instance,
in the right panel of figure 2.5, there is a strong negative correlation between X and
Y when X is less than 0 and a strong positive correlation between X and Y when X is
greater than 0. So one thing we could do with linear tools is draw two lines of best fit,
one for when X is less than 0 and one for when it is greater than 0. That would look like
figure 2.6.

Another thing we could do is transform one of the variables so that the relationship
looks more linear. For instance, in our example, although there is no correlation bet-
ween Y and X, there is a strong linear relationship between Y and X. In figure 2.7 we
plot X? on the horizontal axis and Y on the vertical axis. When we transform X into
X, negative values of X become positive values of X* (e.g., —1 becomes 1), while the
positive values stay positive (e.g., 1 stays 1). So it is as if we are folding the figure in
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Figure 2.6. Fitting two separate regression lines to a non-linear relationship.

on itself at X = 0, and then we're twisting and stretching it a little so that X becomes X*
(0 stays at 0, 1 stays at 1, .5 becomes .5* = .25, and so on).

With this transformation, our regression line shows a strong positive relationship
between Y and X?, and we can do a good job describing the relationship between these
variables with our linear tools.

It’s also worth pointing out that describing the relationship between two variables
with a linear function is always appropriate when we're dealing with binary variables.
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Figure 2.7. Creating a linear relationship by transforming a variable.

For example, lets return to the correlation between oil production and autocracy.
Figure 2.8 plots the data. The scatter plot is not very interesting or informative because
there are only four possible combinations of our two variables. Accordingly, all of the
data points lie on one of those four dots (although we have attempted to make the scat-
ter plot more informative by making the size of the dots proportional to the number of
countries at each set of values). However, we can still plot the slope of the regression line.
The slope of this line is simply the proportion of major oil-producing countries that are
autocracies minus the proportion of non-major oil-producing countries that are autoc-
racies. In other words, we learn the same thing from this picture that we learned from
the table at the outset of the chapter.

One reason that we focus so much on linear relationships is that even non-linear
relationships tend to look approximately linear if you zoom in enough—that is, if you
are interested in a sufficiently small range of values of the variable X. We must be par-
ticularly cautious about extrapolating when we zoom in like that. As we move farther
from the range of data in which the relationship is approximately linear, our descrip-
tions of the relationship (and, by extension, any predictions we make) will be less and
less accurate.

To think more about the dangers of extrapolation, consider an example. Political ana-
lysts find that the incumbent party in U.S. presidential elections tends to get about 46
percent of the vote when there is 0 income growth, and an extra 3.5 percentage points of
the vote for every percentage point increase in income growth. Of course, they’ve mea-
sured this relationship using data on income growth levels that have actually occurred.
Does this mean that we should predict incumbent vote share will be 81 percent ifincome
growth is 10 percent? Probably not. And the incumbent’s vote share definitely would not
be 116 percent if income growth were 20 percent—that’s impossible! But that doesn't
mean a linear description of the data isn't useful for the range of income growths that
we actually experience.
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Figure 2.8. A regression line through data with a binary variable gives the difference in means.

Wrapping Up

Correlations form the foundation of data analysis. They are the way we talk about
relationships between features of the world. And the various statistics by which we mea-
sure correlations—Ilike the covariance, correlation coefficient, or slope of the regression
line—are the way we quantify those relationships.

As we've discussed, correlations can be used for a variety of purposes including
description, forecasting, and causal inference. In chapter 3, we turn our focus to causal-
ity in order to understand what it means and start to get a handle on the aphorism
with which we began—correlation need not imply causation. However, a fuller under-
standing of the relationship between correlation and causation will have to wait until
chapter 9.

Key Terms

 Correlation: The correlation between two features of the world is the extent to
which they tend to occur together.

« Positively correlated: When higher (lower) values of one variable tend to occur
with higher (lower) values of another variable, we say that the two variables are
positively correlated.

o Negatively correlated: When higher (lower) values of one variable tend to
occur with lower (higher) values of another variable, we say that the two
variables are negatively correlated.

« Uncorrelated: When there is no correlation between two variables, meaning
that higher (lower) values of one variable do not systematically coincide with
higher or lower values of the other variable, we say that they are uncorrelated.

o Line of best fit: A line that minimizes how far data points are from the line on
average, according to some measure of distance from data to the line.
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Mean (u): The average value of a variable.

Deviation from the mean: The distance between an observation’s value for
some variable and the mean of that variable.

Variance (0%): A measure of how variable a variable is. It is the average of the
square of the deviations from the mean.

Standard deviation (0): Another measure of how variable a variable is. The
standard deviation is the square root of the variance. It has the advantage of
being measured on the same scale as the variable itself and roughly corresponds
to how far the typical observation is from the mean (though, like the variance,
it puts more weight on observations far from the mean).

Covariance (cov): A measure of the correlation between two variables. It is
calculated as the average of the product of the deviations from the mean.
Correlation coefficient (r): Another measure of the correlation between two
variables. It is calculated as the covariance divided by the product of the vari-
ances. The correlation coefficient takes a value between —1 and 1, with —1
reflecting perfect linear negative dependence, 0 reflecting no correlation, and
1 reflecting perfect linear dependence.

r?: The square of the correlation coefficient. It takes values between 0 and 1 and
is often interpreted as the proportion of the variation in one variable explained

by the other variable. But we have to pay careful attention to what we mean by

“explained.” Importantly, it doesn’t mean that variation in one variable causes
variation in the other.

Sum of squared errors: The sum of the square of the distance from each data
point to a given line of best fit. This gives us one way of measuring how well
the line fits/describes/explains the data.

OLS regression line: The line that best fits the data, where best fits means that
it minimizes the sum of squared error.

Slope of a line: The slope of a line tells you how much the line changes on the
vertical axis as you move one unit along the horizontal axis. So a completely
horizontal line has a slope of 0. An upward sloping 45-degree line has a slope
1, a downward sloping 45-degree line has a slope of —1, and so on.

Slope of the regression line or regression coefficent: The slope of the regres-
sion line describes how the value of one variable changes, on average, when
the other variable changes. The slope of the regression line is the covariance of
two variables divided by the variance of one of them, sometimes also called the
regression coefficient.

Exercises
2.1

Consider the following three statements. Which ones describe a correlation,
and which ones do not? Why?

(a) Most professional data analysts took a statistics course in college.

(b) Among Major League Baseball players, pitchers tend to have lower-
than-average batting averages. (We'll learn why this is the case in
chapter 16.)

(c) Whichever presidential candidate wins Ohio tends to win the Electoral
College.



