2. ESTIMATING
CAUSAL EFFECTS
1TH RANDOMIZED

EXPE ENTS

One of the main purposes of data analysis in the social sciences
is the estimation of causal effects, also known as causal inference.
What are causal effects? And how can we best estimate them?
These are the main questions we answer in this chapter. To illus-
trate the concepts covered, we analyze data from a real-world
experiment. Specifically, we estimate the causal effect of small
classes on student performance using data from Project STAR.

2.1 PROJECT STAR

In the 1980s, Tennessee legislators began to consider reducing
class size in the state’s schools in an effort to improve student
performance. Some studies had suggested that smaller classes
are more conducive to learning than regular-size classes, espe-
cially in the early schooling years. Reducing class size, however,
would require additional funds to pay for the extra teachers and
classroom space. Before moving forward with the new policy, the
legislature decided to commission a thorough investigation of the
causal effects of small classes on student performance. The result
was a multimillion-dollar study called Project Student-Teacher
Achievement Ratio (Project STAR).

In this chapter, we analyze a portion of the data from Project
STAR. The aim of the project was to examine the effects of class
size on student performance in both the short and long term. The
project consisted of an experiment in which kindergartners were
randomly assigned to attend either small classes, with 13 to 17
students, or regular-size classes, with 22 to 25 students, until the
end of third grade. Researchers followed student progress over
time. As the outcome variables of interest, we have student scores
on third-grade standardized tests in reading and math as well as
high school graduation rates.

R symbols, operators, and functions intro-
duced in this chapter: ==, islse{}, and

Based on Frederick Mosteller, “The Ten-
nessee Study of Class Size in the Early
School Grades,” Future of Children 5, no.
2 (1995): 113-27. We study the effects
of small classes as compared to regular-
size classes (without aides), disregarding
data from students who were assigned
to reqular-size classes with aides. We
focus on the initial group of participants
who were randomly assigned to different
class types before entering kindergarten
and exclude observations with any missing
data in the variables used in the analysis.
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A causal relationship refers to the cause-

and-eflect connection between:
the treatment variable (X): variable
whose change may produce a change in
the outcome variable

- the outcome variable (Y): variable that
may change as a result of a change in
the treatment variable.

TIP: At some point, you might have learned
about dependent and independent vari-
ables. Treatment variables are a type of
independent variable, and outcome vari-
ables are the same as dependent variables.

2.2 TREATMENT AND OUTCOME VARIABLES

Tennessee legislators wanted researchers to estimate the causal
effects of small classes on educational outcomes. Specifically,
they wanted to know whether student performance improves as a
direct result of attending a small class and not just as a result of
other factors that may accompany small class sizes, such as better
teachers, higher-performing classmates, or greater resources.

Causal relationships refer to the causa-and-effect connection
between two variables.. In this case, the two variables are (V)
small class and (ii) student performance.

In this book, we study causal relationships in which there is
clear directionality in how the two variables relate to each other:
changes in one variablé may cause changes in-the other. We use
this directionality to distinguish between the variables. We refer
to the variable where the change originates as the treatment vari-
able. We refer to the variable that may change in response to the
change in the treatment variable as the outcome variable. Here,
small class is the treatment variable, and student performance is
the outcome variable.

In mathematical notation, we represent the treatment variable as
X and the outcome variable as Y. We represent the causal rela-
tionship between them visually with an arrow from X to Y. The
direction of the arrow indicates that changes in X may produce
changes in Y but not the other way around:

X—=Y

In Project STAR, we are interested in the folloW'Lng causal link:

small class —  student performance

The distinction between treatment and outcome variables depends
on the nature of the causal relationship between them as well as
on the research question. The same variable might be the outcome
in one study but be the treatment in another. For example, in one
study we may be interested in the effect of attending a small
class on the probability of graduating from high school. Here, the
variable that indicates whether a student graduated from high
school, graduated, is the outcome variable (diagram A below). In
another study, we may be interested in the effect of graduating
from high school on future wages. In that case, graduated would
be the treatment variable (diagram B).

(A)  small class — graduated
(B) graduated — future wages




2.2.1 TREATMENT VARIABLES

In this book, for the sake of simplicity, we focus on treatment vari-
ables that are binary, that is, that indicate whether the treatment
is present or absent. We define the treatment variable for each
individual 7 as:

.

1 if individual i receives the treatment
"7 )0 if individual i does not receive the treatment

Based on whether the individual receives the treatment, we speak
of two different conditions:

- ireatment is the condition with the treatment (X;=1)
- contrel is the condition without the treatment (X;=0).

We describe the observations that receive the treatment as being
under treatment or treated and those that do not as being under
control or untreated.

For example, in the analysis of the STAR dataset, we are inter-
ested in examining the effects of attending a small class on student
performance. The treatment variable, which we name small, is a
binary variable that equals 1 if the student attended a small class
and 0 otherwise. Formally, we define small as:

mall 1 if student i attended a small class
S i =
0 if student i did not attend a small class

2.2.2 OUTCOME VARIABLES

We will see different types of outcome variables. For example, in
the STAR dataset, we will analyze the effect of attending a small
class on three different measures of student performance: reading,
math, and graduated. While the first two outcome variables are
non-binary, the third is binary. As we will see later in the chapter,
the interpretation of the results depends on the type of outcome
variable used in the analysis.

2.3 INDIVIDUAL CAUSAL EFFECTS

When estimating the causal effect of X on Y, we attempt to
quantify the change in the outcome variable Y that is caused by
a change in the treatment variable X. For example, if interested
in the effect of small on reading, we aim to measure the extent
to which student performance on the reading test improves or
worsens as a result of attending a small class, as opposed to a
reqular-size class.

- treatment
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RECALL: A binary variable takes only two
values, in this book 1s and Os, and the
notation i identifies the position of the

obsgrvation in a dataframe or in a variable.

Two conditions: .

control: wher

RECALL: In the STAR dataset, each obser-
vation j represents a different student
because the unit of observaﬁpn is students.

The causal effect of X on Y is the change
in the outcome varlable YV caused by a
change in the treatment variable X
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al outcomes:

Two poter

- potential outcome under the treatment
condition (the value of ¥} if X=1)

- potential outcome under the control
condition (the value of ¥; if X;=0).

FORMULA 2.1. Definition of the individ-
ual causal effects of a treatment on an
outcome.

Note that when estimating a causal effect, we are trying to mea-
sure a change in Y, specifically the change in Y caused by a
change in X. In mathematical otation, we represent change with
A (the Greek letter'Delta), and thus, we represent a change in
the outcome as AY. ’

To measure this change in the outcome Y, ideally we would com-

pare two potential outcomes: the outcome when the treatment is

present and the outcome when the treatment is absent. In math-

ematical notation, we represent these two potential outcomes as

follows: ' L '

- Yi(X;=1) represents the potential ocutcome under the treat-
ment condition for individual / {the value of Y; if X;=1)

- Yi(X=0) represents the potential cutcome under the control
condition for individual i (the value of Y; if Xi=0).

If, for each individual i, we could observe both potential outcomes,
then computing the change in the outcome Y caused by the treat-
ment X would be simple. We would just compute the difference
between these two potential outcomes. Mathematically, the indi-
vidual causal effects of receiving the treatment X on the outcome
Y would be computed as shown in formula 2.1. “

IF WE COULD OBSERVE
BOTH POTENTIAL OUTCOMES

individual_effects; = AY; = Yi(Xi=1) — Y;(X;=0)

where:

- AY;-is the change in the outcome individual i would
have experienced by receiving the treatment, as com-
pared to not receiving the treatment

v

- Yi(X;=1) and Y;(X;=0) are the two potential outcomes
for the same individual i, under the treatment and the
control conditions, respectively

.

For example, if we are estimating the effect of attending a small
class on reading test scores using the data from Project STAR, the
treatment variable X would be small and the outcome variable Y
would be reading. In this case, for each student i, we would like
to observe third-grade reading test scores both (i) after attend-
ing a small class from kindergarten to third grade and (ii) after
attending a regular-size class from kindergarten to third grade.
If this were possible, we could directly measure the causal effect
that attending a small class had on each student's reading per-
formance by calculating:




Areading; = reading;(small;=1) — reading,;(sma{l;=0)

where:

- Areading; is the change in reading test scores student j would

have experienced by attending a small class, as compared to a°

reqular-size class

- reading;(small;=1) is the third-grade reading test score of stu-
dent i after attending a small class (the value of reading; if
small;=1)

- reading;(small;=0) is the third-grade reading test score of the
same student / after attending a regular-size class (the value
of reading; if small;=0).

Let's imagine, for a moment, that we could observe both potential
outcomes for each of the first six students in the STAR dataset.
See the first two columns of table 2.1 below. For illustration
purpeses, we made up the values of the potential outcomes that
were not observed (shown in gray). If these were indeed the true
potential outcomes, then the individual causal effects of small on
reading for these six students would be the values shown in the
third column of table 2.1.

i reading(small=1)  reading(small=0)  Areading
1 578 571 7
2 611 612 -1
3 566 583 3
4 661 661 0
5 614 602 12
6 607 610 -3

Based on table 2.1, we would conclude that attending a small
class as opposed to a reqular-size one:

- increased the reading score of the first student by 7 points, the
score of the third student by 3 points, and the score of the fifth
student by 12 points

- decreased the reading score of the second student by 1 point,
and the score of the sixth student by 3 points

- had no effect on the reading score of the fourth student.

Notice that the same treatment might have different effects for
different individuals. In addition, note that since a causal effect
is a measure of change, we should interpret a causal effect as an
increase if positive, as a decrease if negative, and as having no
effect if zero. (See TIP in the margin.)

RANDOMIZED EXPERIMENTS 31

TIP: This is formula 2.1 with reading as the
Y variable and small as the X variable.
If we could observe both potential out-
comes for every student, we could use this
formula to compute the individual causal
effects of attending a small class on read-
ing test scores.

TABLE 2.1. If for each student i, we could
observe both potential outcomes, then we
could measure the causal effects of small
on reading at the individual level. (Warn-
ing: Here we made up the values of the
unobserved potential outcomes, shown in
gray, for the sake of illustrating individual
causal effects.)

TIP: When interpreting the sign of causal
effects, we should interpret:

- a positive effect as the treatment caus-
ing an increase in the outcome Variable
- a negative effect as the treatment caus-
ing a decrease in the outcome variable
- an effect of zero as the treatment caus-
ing no change in the outcome variable.
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A different way of expressing the two
potential outcomes:

the factual outcome: potential outcome
under whichever condition (treatment or
control) was received in reality

the counterfactual outcome: poten-
tial outcome under whichever condition
(treatment or control} was not received
in reality.

FIGURE 2.1. If an individual could split
into two identical beings, and each one
of them could receive a different condition,
then we could observe the outcome under
the treatment condition and the outcome
under the control condition for the same
individual. We could then calculate the
causal effect of the treatment on the out-
come for this specific individual by simply
measuring the difference between the two
outcomes.

TABLE 22. Values of small, reading,
reading(small=1), and reading(small=0)
for the first six observations in the STAR
dataset. Unobserved potential outcomes,
or counterfactuals, are indicated as 777.

3

\Unfortunatelg, this kind of analysis is not possible. In the real
world, we never observe both potential outcomes for the same
individual. Instead; we observe only the factual cutcome, which
is the potential outcome under whichever condition (treatment or
control) was received in reality. We can never observe the coun-
terfactual outcome, which is the potential outcome that would
have occurred under whichever condition (treatment or control)
was not received in reality. As a result, we cannot compute causal
effects at the individual level. In our example, a student attends
either a small or a reqular-size class during the early schooling
years but cannot enter a parallel universe to attend both at the
same time. (See figure 2.1.)

TREATMENT : SMALL CLASS

READING TEST

CONTROL : REGUIAR-SIZE TIASS

For each student in Project STAR, for instance, we observe only
one third-grade reading test score, the score earned after the
student actually attended one of the two types of classes. As a
result, we cannot measure how class size affected each student’s
performance on the reading test. (See table 2.2, where the coun-
terfactual outcomes for the first six observations are indicated as
777 because they were unobserved.)

small  reading

578 578 707
612 7 612
583 77 583
661 661 777
614 614 777
610 777 610

reading(small=1) reading(small=0)




Take the first student, the observation when i=1. The value
of smally is 1, which means this student attended a small
class. The value of reading,, then, indicates the performance of
this student on the reading test after attending a small class
(reading,(smalli=1)=578).  The score of 578 points is this
student’s factual outcome because we did observe it. What we
did not observe is the counterfactual outcome, that is, how this
student would have performed on the reading test after attending
a reqular-size class (reading,(small;=0)=777). Consequently,
we cannot measure the effect attending a small class had on this
student’s reading test score:

Areading, = reading,(small;=1) — reading, (small;=0)
=578 =777 =777 .

The fundamental problem we face when inferring causal effects
is that we never observe the same individual both receiving the
treatment and not receiving the treatment at the same time.

FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE:
To measure causal effects, we need to compare the factual
outcome with the counterfactual outcome, but we can never
observe the counterfactual outcome.

2.4 AVERAGE CAUSAL EFFECTS
To get around the fundamental problem of causal inference, we
must find good approximations for the counterfactual outcomes. To

accomplish this, we move away from individual-level effects and
focus on the average causal effect across a group of individuals.

The average causal effect of the treatment X on the outcome Y,
also known as the average treatment effect, is the average of all
the individual causal effects of X on Y within a group. Since each
individual causal effect is the change in Y caused by a change in
X for a particular individual, the average causal effect of X on Y
is the average change in Y caused by a change in X for a group
of individuals.

If we could observe both potential outcomes for each individual in
the group, then we could measure individual causal effects (using
formula 2.1) and compute the average causal effect as shown in
formula 2.2.
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We observe only what happens in real-
ity (the factual outcome). We can never
observe what would have happened had
we made different decisions (the counter-
factual outcome).

RECALL: The average of a variable equals
the sum of the values across all observa-
tions divided by the number of observa-
tions. It is often represented by the name
of the variable with a bar on top. ’

The average causal effect of X on Y, also
known as the average treatment effect, is
defined as the average of the individual
causal effects of X on Y across a group
of individuals. It is the average change in
Y caused by a change in X for a group of
individuals.
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FORMULA 2.2. Definition of the average
causal effect of a treatment on an outcome,
or the average treatment effect.

IF WE CUULD OBSERVE
BOTH POTENTIAL OUTCOMES

Sor_; individual_effects;
- n

individual_effects =

where:

- individual_effects is the average causal effect for the
observations in the study, and individual_effects; is the
individual causal effect for observation /

- YU, individual_effects; stands for ‘Eha sum of al
individual_effects; from i=1 to j=n, meaning from the
first oscer\/o‘ixm o individuol_effects to the last one

- nis the number of observations in the study.

Let's return to the idealized scenario where we could observe
both potential outcomes for each of the first six students in the
STAR dataset. As we saw earlier, if the potential outcomes were
those shown in table 2.1, the individual causal effects of small on
reading for these students would be:

individual_effects = {7,-1,3,0,12,-3}

Then, the average causal effect of small on reading would be:

S°r_; individual_effects;

individual_effects =
number of students

7+(-1)+3+0+12+(-3) 18

We would conclude that, among the first six students in Project
STAR, attending a small class, as opposed to a reqular-size one,
improved student performance on the reading test by 3 points, on
average. Remember, though, this kind of analysis is not possible
because we never observe both potential outcomes for the same
individual. Therefore, we are not going to be able to compute
average causal effects directly, either.

How can we obtain good approximations for the counterfactual
outcomes, which by definition cannot be observed? As we will
see in detail soon, we must find or create a situation in which the
treated observations and the untreated observations are similar
with respect to all the variables that might affect the outcome
other than the treatment variable itself. The best way to accom-
plish this is by conducting a randomized experiment.
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2.41 RANDOMIZED EXPERIMENTS AND THE
DIFFERENCE-IN-MEANS ESTIMATOR

In a randomized experiment, also known as a randomized con-
trolled trial (RCT), researchers decide who receives the treatment
based on a random process.

For example, in Project STAR, researchers could have flipped
a coin to decide whether a student would attend a small or
a reqular-size class. If the coin landed on heads, the student
would be assigned to a small class. If tails, the student would be
assigned to a regular-size class. (See figure 2.2))

In practice, researchers do not flip coins but instead use a com-
puter program like R to assign at random a 1 or a 0 to each
individual. Individuals who are assigned a 1 are given the treat-
ment, and individuals who are assigned a 0 are not given the
treatment.

Once the treatment is assigned, we can differentiate between two
groups of observations:

- the treatment group consists of the individuals who received
the treatment (the group of observations for which X;=1)

- the control greup consists of the individuals who did not receive
the treatment (the group of observations for which X;=0).

In Project STAR, the students who attended a small class are the
treatment group. The students who attended a regular-size class
are the control group.
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A randomized experiment is a ftype of
study design tn which treatment assign-
ment is randomized.

FIGURE 2.2. One way of assigning treat-
ment at random is to flip a coin for every
individual in the study. If the coin lands
on heads, the individual is assigned to the
treatment group. If tails, the individual is
assigned to the control group.

Heads Tails

Two groups:
treatment group: observations that
recetved the treatment
control group: observations that did not
receive the treatment.
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Pre-treatment characteristics are the
characteristics of the individuals in a study
before the treatment is administered.

TIP: An unobserved characteristic is a
characteristic that we have not measured.

TIP: Using the values in the table below,
we can confirm that the average of the
difference between X and Y equals the
difference between the average of X and
the average of Y

i X Y X=Y

1 4 2 2

2 10 4 6
averages 7 3 4

X-Y =4 and X—Y=7-3=4

When treatment assignment is randomized, the only thing that
distinguishes the treatment group from the control group, besides
the reception of the treatment, is chance. This means that
although the treatment and control groups consist of different
individuals, the two groups are comparable to each other, on
average, in all respects other than whether or not they received
the treatment.

Random treatment assignment makes the treatment and control
groups on average identical to each other in all observed and
unobserved pre-treatment characteristics. Pre-ireatment charac-
teristics are the characteristics of the individuals in a study before
the treatment is administered. (By definition, pre-treatment char-
acteristics cannot be affected by the treatment.)

For example, in Project STAR, since the treatment was randomly
assigned, the average age of the treatment group—the students
who attended a small class—should be comparable to the average
age of the control group—the students who attended a regular-
size class.

RANDOMIZATION OF TREATMENT ASSIGNMENT:

By randomly assigning treatment, we ensure that treatment
and control groups are, on average, identical to each other in
all observed and unobserved pre-treatment characteristics.

Let’s return to the formula of the average treatment effect. If we'
could observe both potential outcomes for each individual, we
could compute individual causal effects (using formula 2.1), and
the average treatment effect would equal the average difference
between the two potential outcomes:

average_effect = individual_effects = Y (X=1) — Y(X=0)

By the rules of summation, the average of a difference is equal to .
the difference of averages. (For an example, see the TIP in the
margin.) This allows us to rewrite the average treatment effect:

average_effect = Y (X=1) — Y(X=0) = Y(X=1) — Y(X=0)

where:

- Y(X=1) is the average outcome under the treatment condition
across all observations

- Y(X=0) is the average outcome under the control condition
across all observations.




Unfortunately, we cannot compute the average treatment effect
this way because, as you may recall, we never observe both poten-
tial outcomes for each individual. Therefore, we cannot compute
cither the average outcome under the treatment condition across
oll observations or the average outcome under the control condi-
tion across all observations. All we can observe is the average
outcome for the treatment group after receiving the treatment and
the average outcome for the control group after not receiving the
treatment.

If the treatment and control groups were comparable before the
treatment was administered, however, then we can use the factual
outcome of one group as an approximation for the counterfactual
outcome of the other. In other words, we can assume that the

the average outcome of the control group, had the control group
received the treatment. Similarly, we can assume that the average
outcome of the control group is a good estimate of the average out-
come of the treatment group, had the treatment group not received
the treatment. As a result, we can approximate the average treat-
ment effect by computing the difference in the average outcomes
between the treatment and control groups. Since both of these
average outcomes are observed, this is an analysis we are able
to perform.

To summarize, if the treatment and control groups were compara-
ble before the treatment was administered, we can estimate the
average causal effect of treatment X on outcome Y with formula
2.3, which is known as the difference-in-means estimator.

IF GROUPS WERE COMPARABLE BEFORE
THE TREATMENT WAS ADMINISTERED

T — p—
average_effect = Y treatment group — Y control group

B

where:

e —
- average_effect stands for the estimated average freat-
L)

ment effect (the “hat” on top of the name denotes that
this is an estimate or approximation)

= Yireatment group 1S the average outcome for the treatment

group and Y control group 1S the average cutcome for the
control group (both of which are observed).

Note that the “hat” on top of the name denotes that this is an
estimate, that is, a calculation based on approximations. All esti-
mates, including this one, contain some uncertainty. (We will see
how to quantify this uncertainty in chapter 7.)

average outcome of the treatment group is a good estimate of'
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FORMULA 2.3, The right-hand side of the
equation is the formula for the difference-
in-means estimator, which produces a
valid estimate of the average treatment
effect when the treatment and control
groups are comparable with respect to all
the variables that might affect the sutcome
other than the treatment variable itself

TIP: To estimate causal effects, it is nec-
essary to have both a treatment group and
a control group. In other words, it is not
sufficient to observe a group of individuals
who received the treatment; we also need
to observe a group of individuals who did
not receive the treatment.
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Experimental data are data collected from
a randomized experiment, whereas obser-
vational data are data collected about
naturally occurring events. Studies that
use observational data are called obser-
vational studies.

It is worth repeating that the difference-in-means is a valid esti-
mator of the average causal effect of a treatment on an out-
come only when the treatment and control groups are comparable
with respect to all the variables that might affect the outcome
other than the treatment variable itself. As stated earlier, this
is best achieved in experiments such as Project STAR, in which
the treatment is randomly assigned. The randomization of treat-
ment assignment enables researchers to isolate the effect of the
treatment from the effects of other factors.

ESTIMATING AVERAGE CAUSAL EFFECTS USING

RANDOMIZED EXPERIMENTS AND THE DIFFERENCE-
IN-MEANS ESTIMATOR: By using random treatment

assignment, we can assume that the treatment and control

groups were comparable before the administration of the

treatment. As a result, we can rely on the difference-in-

means estimator to provide a valid estimate of the average

treatment effect.

Unfortunately, we are not always able to conduct an experiment.
Three types of obstacles might prevent us from running one:

- Ethical: It would not be ethical to randomize certain tfeatments,
such as a potentially lethal drug.

Logistical: Some treatments, such as height or race, cannot be
easily manipulated.

Financial: Experiments are often expensive. Project STAR cost
many millions of dollars, for example.

Given that we cannot always run experiments, we need to’learn
how to estimate causal effects in non-experimental settings, using
what is called observational data. Unlike experimental data,
which refers to data collected from a randomized experiment,
observational data are collected about naturally occurring events.
Treatment assignment is out of the control of the researchers and
is often the result of individual choices. For example, we may want
to estimate the average causal effect of small classes on student
performance by collecting data from school districts where the size
of the classes varies as a result of factors such as school budgets,
student enrollment, or the physical limitations of the school build-
ings. In these types of studies, known as observational studies,
we have to find a statistical way to make treatment and con-
trol groups comparable without relying on the randomization of
treatment assignment. We will learn how to do this in chapter 5.

Now that we know that when analyzing the STAR dataset, we
can use the difference-in-means estimator to estimate the average
causal effect of small classes on student performance, it is time to
perform the analysis.




2.5 DO SMALL CLASSES IMPROVE STUDENT
PERFORMANCE?

To follow along with this chapter’s analysis, you may create a
new R script in RStudio and practice typing the code yourself.
Alternatively, you may open “Experimental.R” in RStudio, which
contains all the code for this chapter. We begin the analysis by
running the following code from the previous chapter:

- Se’ﬁf/{"(} if Mac
1A setwd() if Windows

rvations P

th graduated
i i 78 610 1
A 2 gula 612 612 1
#3 3 regulay 583 600 1
HtE 4 small 661 648 1
#H# 5 small 614 636 1
## 6 regular 610 603 0

i

Here, we are interested in using this dataset to estimate the
average causal effect of attending a small class on three different
measures of student performance: reading, math, and graduated.
For each outcome variable, we need to perform a separate analy-
sis. Since Project STAR was a randomized experiment, we can use
the difference-in-means estimator to estimate each of the three
average treatment effects.

Before we can compute the difference-in-means estimators, we
need to learn to use relational operators, which enable us to
create and subset variables.

2.5.1 RELATIONAL OPERATORS IN R

There are many relational operators in R that can be used to set
a logical test. In this book, we use only the operator ==, which
evaluates whether two values are equal to each other. If they
are, R returns the logical value TRUE. If they are not, R returns
the logical value FALSE. (TRUE and FALSE are not character
values. They are special values in R, with a specific meaning,
and therefore are not written in quotes.) For example, if we run:

R lets us know that indeed 3 equals 3. If we instead run:

o
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TIP: If you are starting a new R session, to
operate with the data, you need to re-run
some of the code we wrote in the previous
chapter, specifically the lines of code that:

- set the working directory to the folder
contammg the dataset using the func-
tion = j

- read the dataset using v{} and
store it as an object called star using
the assignment operator <

We provide here the code to set the work-
ing directory if the DSS folder is saved
directly on your Desktop. (Note that in
the code for Windows computers, you must
substitute your own username for user.) If
the DSS folder is saved elsewhere, please
see subsection 1.7.1 for instructions on
how to set the working directory.

= is the relational operator that
evaluates whether two values are
equal to each other. The output is
a logical value TRUE or FALSE.
Example: =
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RECALL: In the STAR dataset, the vari-
able classtype identifies the class the
student attended. In R, we use the <
character to access a variable inside a
dataframe, To its left, we specify the name
of the object where the dataframe is stored
(without quotes). To its right, we specify
the name of the vartable (wnhout quotes).
Example: datoSvarioble. We use quotes

around values that are text but not around
values that are numbers. In the output,
the numbers in brackets at the beginning
of each line indicate the position of the
observation immediately to the right.

creates the contents of a
new variable based on the values of
an existing one. It requires three
arguments in the following order,
separated by commas: (1) the log-
ical test, (2) return value if test is
true, and (3) return value if test is
false.

= is the relational operator we
use to set the logical test that eval-
uates whether the observations of a
variable are equal to a particular
vatue. We write values in quotes
if text but not if numbers.

Example: Ik 12¢ yes

U} returns a 1 when var equals
“yes” and a 0 otherwise, creating
the contents of a binary variable
using the existing character variable
var.

#4 [1) FALSE

R returns a FALSE, indicating that 3 is not equal to 4.

We can apply relational operators to all the values in a variable
at once. In this case, R considers the value of each observation
one by one and returns a TRUE or a FALSE for each of them. For
instance, if we wanted to determine which students in the STAR
dataset attended a small class, we run:

## [1] TRUE FALSE FALSE TRUE TRUE FALSE

#7# (7] TRUE TRUE FALSE FALSE FALSE FALSE

After running the code above, R returns as many logical values
as observations in the variable classtype. (Here we show you
only the first 12.) For students who attended a small class, R
returns TRUE because the value of classtype equals “small”. For
students who did not, R returns FALSE. For example, as we saw
in the output of head() above, the value of classtype for the first
observation is “small”, and therefore, here R returns TRUE as the
first output.

Now we can ask R to perform a different action depending on
the results from a logical test (the TRUE or FALSE returned
from applying the == operator). For example, we can ask R to
produce values for a new variable or to extract specific values from
an existing variable based on the results of the logical test.

2.5.2 CREATING NEW VARIABLES ‘

Using the function ifeise(], which stands for “if logical test is true,
return this, else return that,” we can create the contents of a new
variable based on whether the values of an existing variable pass
a logical test. For example, we can create the contents of a new
binary variable based on the values of classtype. For the students
whose value of classtype equals “small’, we ask R to return a 1,
and for all other students a 0.

The function & requires three arguments:

- The first is the logical test, which specifies the true/false ques-
tion that serves as the criterion for creating the contents of
the new variable. In the current application, for every student,
we want to evaluate whether the value of classtype equals
“small”. As shown above, the code si: =5

accomplishes this.

The second argument is the value we want the function to return
when the logical test is true. In this case, we want the return
value to be a 1 whenever classtype equals “small”.




- The third argument is the value we want the function to return
when the logical test is false. In this case, we want the return
value to be a 0 whenever classtype does not equal “small”.

Go ahead and run the following code:

The function returns a 1 or a O for every student in the STAR
dataset depending on the type of class they attended. (Here
again, we show you only the first 12 values.)

To store these values as a new variable, we use the assignment
operator <. To its left, we need to specify the name of the new
variable. Here, we chose to name the variable small. To store it
as a variable inside the dataframe and not just as a new object
by itself, we need to identify the name of the dataframe before
the name of the variable with the % character in between. (Note
that the % character allows us to create a new variable, and not
just access an existing one as we saw in chapter 1.)

Putting it all together, to create the new variable small we run:

Whenever you create a new variable, it is good practice to check
its contents. Doing so can save you a lot of trouble down the
road. For example, here we can take a quick look at the first few
observations of the dataframe using | to ensure that the new
binary variable was created correctly.

# shows first observations
ype reading math graduated small

mal 578 610 1
g 612 612 1 0
583 606 1 0

661 648 | 1

614 636 1 1

610 602 0 0

Looklng at the output, we can see that we have a new variable
called small. Comparing the values of small to the values of
classtype, we can confirm that whenever classtype equals “small’,
small equals 1 and that whenever classtype equals “reqular”,
small equals 0. Indeed, in the first, fourth, and fifth observations,
the value of classtype is “small” and the value of small is 1. In
the second, third, and sixth observations, the value of classtype
s “reqular” and the value of small is 0.

S
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TIP: Here, the first return value is a 1
and the second is a 0. Why? In the first
observation of the STAR dataset, classtype
equals “small”, and so the logical test is
TRUE, and therefore, the iie J function
returns a 1. In the second observation,
classtype equals “regular”, and so the log-
ical test is FALSE, and therefore, the
iielsell function returns a 0.

¢ is the character used to identify
a variable inside a dataframe, either
to access it or to create it. To its left,
we specify the name of the object
where the dataframe is stored (with-
out quotes). To its right, we specify
the name of the variable (without
quotes). Example: s

e,

TIP: Recall that the name of an object or
variable can be anything as long as it does
not begin with a number or contain spaces
or special symbols like $ or %. *For prac-
tical reasons, the name of an object or
variable should reflect the meaning of its
contents, be short, and be written in all
lowercase letters.
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| is the operator used to extract
a selection of observations from a
variable.  To its left, we spec-
ify the variable we want to sub-
set. Inside the square brackets,
we specify the criterion of selec-

5.3 SUBSETTING VARIABLES

Using square brackets |, we can extract the selection of observa-
tions for which a logtcal test is true. This is useful in a variety
of situations. For example, to estimate the average causal effect
of small on reading, we need to compute the following difference-
in-means estimator:

tion. For example, we can specify
a logical test using the relational average reading
operator Only the observa- test scores among
tions for which the logical test is students in -
true will be extracted. Example:

dataSve o1 extracts small classes

the observations of the variable var?
for which the variable var2 equals 1.

average reading
test scores among
students in
regular-size classes

This formula requires calculating the averages of two subsets of
observations of reading for which a certain criterion is met. To
subset a variable, we use the || operator. To its left, we specify
the variable we want to subset, =t : in this case. Inside
the square brackets, we specify the criterion of selection. The
examples below should clarify how this works.

RECALL: meani) calculates the mean of a
variable. The only required argument is
the code Ldentu‘gmg the variable. Exam-
ple: me

As stated in the previous chapter, we can use the function » )
to compute the mean of a variable in R. To calculate the average
reading scores among all students in the STAR dataset, we run:

. the mean of reading

-

To calculate average reading scores among only the students who
attended a small class, we need to include in the average ohly the
observations of reading for which small equals 1. The following
code accomplishes this:

Values of small and reading for the first
six observations in the STAR dataset.
Observations from students who attended
a small class (small=1) are in black, and
observations from students who attended
a regular-size class (small=0) are in gray.

Only the observations of reading for which the logical test speci-
fied inside the square brackets is true are selected for the compu-
tation of the mean. For example, among the first six observations
in the dataset, only the values of reading that correspond to
observations 1, 4, and 5 are included in this average. (See the
table in the margin.) According to the output above, students who
attended a small class earned about 633 points on the reading
test, on average.

i small reading

578
gég How about the students who attended a reqular-size class? The
661 code to compute this mean is identical to the one above, except

614 that now the criterion of inclusion is that small must equal 0.

610 group

[ R

01y # for control

Based on this output, students who attended a regular-size class
earned about 625 points on the reading test, on average.




ho
he

g

he
pt

Now we can easily calculate the difference-in-means estimator
as the difference between these two averages using the outputs
above (070 — ©25). Better yet, we can compute it all at once, by
running the followmg piece of code:

- reading

For the other two outcome variables, then, we can compute the
corresponding difference-in-means estimators as follows:

- graduated

These two pieces of code are identical to the previous one, except
that now we use math and graduated, respectively, instead of
reading as the outcome variable of interest.

What can we conclude from these results? Assuming that the
students who attended a small class were comparable before
schooling to those who attended a reqular-size class (a reason-
able assumption given that the dataset comes from a randomized
experiment), we estimate that attending a small class:

- increased student performance on the third-grade reading test
by 7 points, on average

- increased student performance on the third-grade math test by
6 points, on average

- increased the proportion of students graduating from high
school by about 1 percentage point, on average.

Notice that conclusion statements should mention the key ele-
ments of the analysis. (See TIP in the margin.) In addition, note
that the unit of measurement of the difference-in-means estima-
tor differs depending on the type of outcome variable. See the
summary provided in outline 2.1. (Just as we did when discussing
the interpretation of means in chapter 1, we exclude categorical
variables from this discussion.)
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TIP: By convention, when we include in
the R script a comment at the beginning
of a line, as opposed to after some code,
we use two # characters instead of one.

TIP: Good conclusion statements are clear,
are concise, and include the key ele-
ments of the analysis. For example, when
estimating average causal effects with ran-
domized experiments, be sure to convey:

- the assumption: the treatment and con-
trol groups are comparable based on

> pre-treatment characteristics; in this
case, students who - attended a small
class were comparable before schooling
to those who attended a regular-size
class

- the justification for the assumption:
dataset comes from a randomized exper-
iment

- the treatment: attending a small class

- the outcome variable(s): third-grade
reading test scores, third-grade math
test scores, and proportion of students
graduating from high school

- the direction, size, and unit of measure-
ment of the causal effect(s): an increase
of 7 points, an increase of 6 points, and
an increase of a little less than 1 per-
centage point, respectively

- the fact that you are making a causal
claim: use causal language (attending
a small class increased student perfor-
mance) rather than observational lan-
guage (students attending a small class
performed better than students attend-
ing a regular-size one)

- the fact that you are estimating average
causal effects as opposed to individual
causal effects.



44  CHAPTER2

OUTLINE 2.1. Unit of measurement of
the difference-in-means estimator based
on the type of outcome variable.

TIP: What is a percentage point? |t is
the unit of measurement for the arithmetic
difference between two percentages. For
example, if a student’s proportion of cor-
rect answers on a test improved from 50%
to 60%, we would state that the score
increased by 10 percentage points:

/\SCOre = SCOrefnal — SCOT€initial
=60% — 50% = 10 p.p.

Why is this difference not referred to as
10%? Because percentage change is dif-
ferent from percentage-point change. If
someone told us that the initial score was
50% and that it increased by 10%, the final
score would be 55% (not 60%). Because an
increase of 10% of 50% is an increase of
5 percentage points (0.10x50=5 p.p.), the
final score would be:

SCOTefinal = SCOTeinitial + LASCOre
=50% + 5 p.p. = 55%

unit of measurement of the difference-in-means estimator
|

T 1
if outcome variable if outcome variable
is non-binary: is binary:
in the same in percentage points
unit of measurement (after multiplying
as the outcome variable the result by 100)

If the outcome variable is non-binary, the unit of measurement of
the difference-in-means estimator will be the same as the unit of
measurement of the outcome variable. For example, if the outcome
variable is measured in points, as is the case with both reading
and math, then the average outcomes for the treatment and control
groups will also be in points (the average of points is measured
in points) and so will be the estimator (points—points=points).

If the outcome variable is binary, the unit of measurement of the
difference-in-means estimator will be percentage points, some-
times abbreviated as p.p. (after multiplying the output by 100).
Why? :

- First, as explained in the previous chapter, the average of a
binary variable should be interpreted as a percentage (after
multiplying the output by 100), because it is equivalent to the
proportion of the observations that have the characteristic iden-
tified by the variable. As a result, when the outcome variable
is binary, as is the case with graduated, the average outcomes
for the treatment and control groups will both be measured in
percentages (after multiplying the output by 100).

Second, the unit of measurement for the arithmetic dif-
ference between two percentages is percentage points
(percentage—percentage=percentage points). (See TIP in
the margin.) Therefore, if the outcome variable is binary, the
difference-in-means estimator will be measured in percentage
points (after multiplying the output by 100).

As an example, let's revisit the interpretation of the difference-in-
means estimator for the binary variable graduated.

First, calculate the average of graduated for students attending a
small class and for students attending a regular-size class, sep-
arately:

ll==11} # for treatment group

24 [1] 0.8735043

i ; o200 ] # for control group
## (1] 0.8664731 ‘




The top output above indicates that among students who attended
a small class, the average high school graduation rate was 87.35%
(0.8735x100=87.35%). The bottom output indicates that among
students who attended a regular-size class, the average high
school graduation rate was 86.65% (0.8665x100=86.65%).

Second, compute the difference-in-means estimator, which is the
difference between the two averages above:

## difference-in-means for graduated

As we already knew from our calculations above, the difference-in-
means estimator for graduated equals 0.007. It should be inter-
preted as an increase in the probability of graduating from high
school of 0.7 percentage points, on average (0.007x100=0.7 p.p.
or 87.35%—86.65%=0.7 p.p.).

Now that we have clarified how to interpret the difference-in-
means estimator, let's return to our estimates of the average
treatment effects above. There are two caveats to these estimates:

- First, they indicate how much the average outcome across mul-
tiple individuals changes as a result of the treatment. They do
not indicate how the treatment would affect any one individ-
ual’s outcome. As we saw in the idealized scenario earlier in the
chapter, individual-level treatment effects might differ signifi-
cantly from average treatment effects. While we estimate that
student performance on the reading test improved, on average,
as a result of attending a small class, a particular student’s
performance might have suffered from it.

- Second, the validity of these estimates rests on the plausibility
of the assumption that the treatment and control groups are
comparable with respect to all the variables that might affect
the outcome other than the treatment variable itself. In this
case, we can confidently make this assumption because we are
analyzing data from a randomized experiment.

There are still a few questions that we need to answer to complete
this analysis. Two in particular are worth noting here:

- Can we generalize these results to a population of students
other than those who participated in Project STAR?

- Do the estimated causal effects represent real systematic effects
rather than noise in the data?

We learn how to answer the first type of question in chapter 5 and
explore the second in chapter 7, once we have become acquainted
with the relevant concepts.
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TIP: Because an average causal effect
estimates the average change in Y caused
by a change in X, it should be interpreted
as an average increase in Y if positive, as
an average decrease in Y if negative, and
as no average change in Y if zero.



2.6 SUMMARY

In this chapter, we learned about causal effects and some of the
difficulties we face when attempting to estimate them.

If we could observe the outcomes of the same individual under
both treatment and control conditions at the same time, we could
compute the causal effect of the treatment on a particular indi-
vidual's outcome as the difference between these two potential
outcomes.

Unfortunately, observing both potential outcomes is not possible.
In reality, we observe only the outcome under the condition each
individual received {the factual outcome) and can never observe
what would have happened had the individual received the oppo-
site condition (the counterfactual outcome).

To estimate a causal effect, we have to rely on assumptions to
approximate the counterfactual outcome. This leads us to estimate
average treatment effects across multiple individuals rather than
the treatment ?ﬁect for each individual.

When the treatment and control groups are comparable, we can
use the average observed outcome (the factual outcome) of one
group as a good approximation for the average unobserved out-
come (the counterfactual outcome) of the other. Under these
circumstances, the difference~in-means estimator produces a valid
estimate of the average treatment effect.

The best way of ensuring that treatment and control groups are
comparable is to run a randomized experiment. By assigning
individuals to the treatment or control group based on a random
process such as a coin flip, we ensure that the two groups have
identical pre-treatment characteristics, on average. Later in the
book, we will learn how to estimate average causal effects when
we cannot run a randomized experiment and, instead, must ana-
lyze observational data.






