Another common goal for data analysis in the social sciences
is to estimate population characteristics using surveys. Surveys
enable us to infer the characteristics of an entire population by
measuring them in a representative sample. In this chapter, we
explain how survey research works and discuss some methodolog-
ical challenges that may arise in the process. We also learn how
to visuatize and summarize both the distribution of a single vari-
able and the relationship between two variables. To illustrate
these concepts, we analyze data from and about the 2016 British
referendum on European Union (EU) membership.

3.1 THE BEU REFERENDUM 1IN THE UK

Faced with growing discontent among the British people with the
relationship between the United Kingdom (UK) and the EU, in
2016 the UK government held a referendum. British voters were
asked to weigh in on whether the UK should stay in or leave the
EU. The second choice became known as Brexit, an abbreviation
for “British exit”

This was a high-stakes referendum, with global political, legal,
and soctoeconomic ramifications. Leading up to the vote, a group
of researchers from the British Election Study (BES) conducted
a large survey to measure public opinion and predict the out-
come. In the first few sections of this chapter, we analyze data
from this survey to measure support for Brexit and determine the
demographic makeup of Brexit supporters. Subsequently, we ana-
lyze the actual referendum results to determine whether patterns
observed in the BES sample can also be observed in the popula-
tion of interest as a whole.

R symbols, operators, and functions intro-
duced in this chapter: sublel

Based on Sara B. Hobolt, “The Brexit
Vote: A Divided Nation, a Divided Con-
tinent,” Journal of Eurepean Public Policy
23, no. 9 {2016): 1259-77. The data come
from Wave 7 of the British Election Study.
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FIGURE 31. A sample is a subset of
observations from a target population. In
this case, the sample is clearly not repre-
sentative of the population, The proportion
of red individuals in the sample is substan-
tially different than the proportion of red
individuals in the population.

RECALL: The preportion of observations
that meet a criterion is calculated as:

number of observations
that meet criterion

total number of chservations

To interpret this fraction as a percentage,
we muitiply the resulting decimal by 100.

3.2 SURVEY RESEARCH

in the social sciences, we often want to know the characteristics of
a population of interest. Yet collecting data from every individual
in the target population may be prohibitively expensive or simply
not feasible.

In survey research, we collect data from a subset of ohservations in
order to understand the target population as a whole. The subset
of individuals chosen for study is called a sampia. The number of
observations in the sample is represented hy n, and the number
of observations in the target population is represented by N. For
example, in the aforementioned BES survey, researchers collected
data from just under 31,000 people to infer the attitudes of more
than 46 million eligible UK voters (n=31,000; N=46 million).
Even more remarkably, in the United States, researchers typically
survey only about 1,000 people to infer the characteristics of more
than 200 million adult citizens (n=1,000; N=200 million).

In survey research, it is vital for the sample to be représentative
of the population of interest. A representative sample accu-

rately reflects the characteristics of the population from which

it is drawn. Characteristics appear in the sample at similar rates
as in the population as a whole.

POPYLATION (W]

SAMPLE (i)

If the sample is not representative, our inferences regarding the
population characteristics based on the sample will be invalid.
For example, in figure 3.1 above, the sample is clearly not rep-
resentative of the population; the proportion of red individuals
in the sample is 100% (8/8=1), while the proportion of red indi-
viduals in the population is only about 43% {19/44=0.43). As a
result, the sample would lead us to infer the wrong pepulation
characteristics.




72,1 RANDOM SAMPLING

The best way to draw a representative sample is to select indi-
viduals at random from the population. This procedure is called
rapdom sampling, For example, to select individuals from a pop-
ulation randemly, we could number the individuals from 1 to A,
write the numbers on slips of paper, put the slips of paper in a
hat, shake the hat, and choose n slips of paper from the hat. (In
practice, researchers do not use a hat but instead use a computer
program like R to draw n random numbers from 1 to N}

See figure 3.2 for an example of a randomly selected sampte. In
this case, the proportion of red individuals in the sample is 38%
(3/8=0.38), which is not far from the proportion of red individuals
in the population (43%). [t is not exactly the same because n is

relatively small. As we will see later in the book, as the 'sample ~

size (n) increases, the characteristics of the sample will more
closely approximate those of the population.

POPYLATION (W}

SAMPLE {n}

In the previous chapter, we saw how random assignment of indi-
viduals into treatment and control groups makes the two groups
identical to each other, on average, before the treatment, in both
observed and unobserved traits. Here, the random selection of
individuals from the population makes the sample and the target
pepulation identicat to each other, on average, in both observed
and unobserved traits.

INFERRING POPULATION CHARACTERISTICS VIA
RANDOM SAMPLING: By randomly selecting a sample
of observations from the target population, we ensure that
the target population and the sample are, on average,
identical to each other in all observed and unobserved
characteristics. In other words, we ensure that the sample
is representative of the target population, which enables us
to make valid inferences about the population.
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Random sampling consists of randomly

selecting tndvdduats trom the population

FIGURE 3.2. By randomly selecting indi-
viduals from the population, the propertion
of red individuals in the ‘sample more
closely approximates the proportion of red
individuals in the population than the sam-
ple shown in figure 3.1.

TIP: Do not confuse random treatment
assignment with random sampling. Ran-
dom treatment assignment means assign-
ing treatment (deciding who receives it and
who doesn’t) at random; random sampling
means selecting individuals from the pop-
ulation at random to be part of the sample.
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322 POTENTIAL CHALLENGES

While random sampling is straightforward in theory, in practice
it often faces complications that might invalidate the results.

First, to implement random sampling, we need the complete list
of observations in the target population. This list is known as the
sampling frame. In practice, the sampling frame of a population
can be difficult to obtain. Lists of residential addresses, emails,
or phone numbers often do not include the entire population of
interest. More problematically, the individuals missing tend to be
systematically different from those included. For example, a list
of residential addresses may miss peopte who are either home-
less or have recently moved, two segments of the population that
are notably different from the rest. These omissions may ren-
der the lists not only incomplete but also unrepresentative of the
population.

Second, even if we have access to a comprehensive list of the indi-
viduals in the populatien, soeme of those randomly selected might
refuse to participate in the survey. This phenomenon is called
unit nonvesponse.  |f the individuals who refuse to participate
differ systematically from those who agree, the resulting sample
will be unrepresentative.

Third, participants might agree to answer some but not att of
the questions in the survey. Respondents might feel uncomfort-
able sharing with strangers certain information about themselves,
Whenever we have unanswered questions, we encounter what is
called item nonresponse. If the missing answers differ system-
aticatly from the recorded answers, the data collected for the
question at hand will not accurately reflect the characteristics of
the population.

Fourth, participants might provide inaccurate or false information.
This phenomenon, known as misreporting, is particularly likely
when one answer is more sacially acceptable or desirable than the
others. For example, in the United States, official turnout rates in
presidential elections have recently been around 60%, yet more
than 70% of respondents in the American National Election Stud-
ies (ANES) report voting. Voting is often perceived to be a civic
duty, so respondents might feel social pressure to lie about their
voting behavior. As a rule, whenever we rely on self-reporting,
we should be aware that misreporting might contaminate the data
collected.

The statistical adjustments necessary to address these problems
are beyond the scope of this book. For the purpose of our analysis,
we assume that the sample from the BES survey is representative
of the target population of interest, all eligible UK voters. Con-
sequently, we use it to infer the population’s support for Brexit,




1.3 MEASURING SUPPORT FOR BREXIT

Let's analyze the BES survey data to see how much support there
was for Brexit a few weeks before the referendum occurred. {The
survey was conducted between Aprit 14 and May 4, 2016, and
the referendum took place on June 23)

The code for this chapter’s analysis can be found in the "Popula-
tion.R" file. Alternatively, you may choose to create a new blank
R script and practice typing the code yourself. The file “BES.csv”
contains the survey data, and table 3.1 provides the names and
descriptions of the variables.

variable description

vote respondent’s vote intention in the EU referendum:
"leave”, “stay”, "don’t know”, or “won't vote”

leave identifies leave voters: 1=intends to vote "leave”
or O=intends to vote “stay”; (NA=either “don't
know" or "won't vote”)

respondent's highest educational qualification:
1=no qualifications, 2=general certificate of
secondary education (GCSE), 3=general cer-
tificate of education advanced level (GCE A
level), 4=undergraduate degree, or 5=postgrad-
uate degree; (NA=no answer)

education

oge respondent’s age (in years)

Before starting our analysis of the BES survey dataset, we need
to load and make sense of it, just as we did in chapter 1 with the
STAR dataset. {See section 1.7 for details))

First, we change the working directory so that R knows where fo
look for the data. Go ahead and run the code you used in chapter
1 to direct R to the DSS folder. Now we can read and store the
dataset in an object named bes by running:

71 9E reads and stores data

To get a sense of the dataset, we can look at the first six obser-
vations using the function beadly

szd{ves] ¥ shows first observations
e vote leave education age

i

HAE leave 1 3 60
#HH 2 ieave 1 NA 56
3 stay { 5 73
A4 eave 1 4 54
#HF# 5 doen’'t know MNA 2 5B
HH O stay 0 4 85

INFERRING POPULATION CHARACTERISTICS 55

TABLE 3.1. Description of the variables
in the BES survey data, where the unit of
observation is respendents.

RECALL: If the DSS folder is saved
directly on your Desktop, to set
the working directory, you must run
et Deskoep/ S 5S if you have a

L

Mac and =

if you have a Windows computer {where
user is yaur own username). If the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on howr
to set the working directory.
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ADVANCED TiP:  Recall that
ielnsil creates the contents of a
new variable based on the values
of an existing one. It requires
three arguments in the following
order, separated by commas: (1)
the logical test, (2) return value if
test is true, and (3) return value i
test is false. If the variable leave
had not been part of the dataframe,
we couLd have created it using one
tiulsed: function nested in another:

The observations of the variable
{eave will be a 1 when vote equals
“leave”, a 0 when vote equals “stay”,
and an NA in all other cases. The
structure of this piece of code is as
follows: ifelse(test?, value if testl
is true, ifelse(test2, value if test] is
false and test? is true, vatue if both
test1 and test2 are false)).

Based on this output and table 3.1 (including the title of the
table}, we learn that each observation represents a survey respon-
dent, and that the dataset contains four variables:

- vote captures how each respondent intended to vote in the ref-
erendum on Britain’s EU membership at the time of the survey.
Itis a character variable that can take the following four values:

“leave”, “stay”, “don’t know", or “won’t vote”.

- leave is a binary variable that identifies leave voters, that is,
Brexit supporters. it equals 1 if respondent intended to vote
“leave” and 0 if respondent intended to vote “stay”. For respon-
dents who either didn't know how they would vote or did net
intend to vote, we have NAs, which is how R represents missing
values. (More on missing data seon.) Note that if this variable
had not been part of the dataframe, we could have created it
using the contents of vote by using multiple #21s2{) functions.
{See ADVANCED TIP in the margin.)

- educotion represents respondents’ highest educational qualifi-
cation. It is a non-binary numeric variable that can take five
values: 1, 2, 3, 4, or 5. Each of these represents a different
tevel of educational attainment, where 1 is the lowest level and
5 is the highest. Nonresponses are coded as NAs,

- age captures respondents’ age in years, which means that it is
a non-binary numeric variable that can take many values.

Putting it all together, for example, we interpret the first obser-
vation as representing a survey respondent who intended to vote
"leave” in the EU referendum and was, therefore, a Brexit sup-
porter, whose highest educational qualification was the general
certificate of education advanced tevel (the British equivalent of
a high school diplema), and whe was 60 years old at the time of
the survey.

Finally, to find out how many respondents were part of the survey,
we run:

<t # provides dimensions of dataframe: rows, columns
## 1’3} 30895 4

Based on this output, we determine that the dataset contains
information about 30,895 respondents. In other words, the sample
size (n} is 30,895. (This is an impressively large surveyl)

3.3.0 PREDICTING THE REFERENDUM QUTCOME

To predict the outcome of the referendum, we need to estimate the
proportions of eligible UK voters who were (i) in favor of Brexit
and (ii) opposed to Brexit, at the time the survey was conducted.




if the sample of respondents in the BES survey is representative
of alt eligible UK voters, then we can use the proportion of indi-
viduals' characteristics in the sample as good approximations of
the proportion of individuals’ characteristics in the entire target
populaﬁon.

To compute the proportions of individuals who were in favor of
and opposed to Brexit in the BES sample, we create the table
of proportions of the variable vote, but first we need to create a
table of its frequencies.

2,37 FREQUENCY TABLES

The freguency table of a variable shows the values the variable
takes and the number of times each value appears in the variable.

For example, if X=={1,0, 0, 1, 0}, the frequency table of X is:

values 0 1

frequencies 3 2

The table shows that X contains three observations that take the
value of 0 and two observations that take the value of 1.

To create a frequency table in R, we use the function 1. The
only required argument is the code identifying the vanable to be
summarized. In this case, to calculate the frequency table of vote,
we run:

it o] # creates frequency table
#F# don't know {eave stay won't vote
H#H 2314 13682 14352 537

This frequency table shows that out of the 30,895 respondents
in the BES survey, 2,314 were undecided, 13,692 intended to
vote "leave”, 14,352 intended to voie “stay”, and 537 had no
intention of voting. Note that the sum of all the frequencies
equals the total number of observations in the sample, n
(2314+13692+143524-537=30895).

3 TABLES OF PROPORTIONS

The tabie of proportions of a variable shows the proportion of
observations that take each value in the variable. By definition,
the propertions in the table should add up to 1 {or 100%).

Far example, if X={1, 0, 0, 1, 0}, the tabte of proportions of X
is:
values 0 1

propertions 06 04
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het Himes e-::(:%‘a value appears in the
variabio

tableld  creates  the  frequency
table ‘of a variable.  The onty
required argument is the code
identifying the variable. Example:

RECALL: We use the i character to access
a variable inside a dataframe. To its
left, we specify the name of the object
where the dataframe is stored (without
quotes). To its right, we specify the name
of the variable (without quotes). Example:

of ohservations

i a variable
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The table shows that 60% of the observations in X take the value
of & and 40% take the value of 1. (Recall, to interpret a proportion
as a percentage, we multiply the decimal value by 100}

peapiablell converts a frequency To create a table of proportions in R, we use the function
tabte into a table of proportions. 21, which converts a frequency table into a table of
The only required argument is the proportions. This function takes as its main argument either

fﬁgpﬁg t:;i:&?;:;g" thevan;vl:ttlz (a} the name of the object containing the output of the function
{; directly; in both cases the

inside the parentheses. Example: taied or (b) the function
prog tabletsblet dath va i) variable of interest is specified inside the parentheses of ¢ '
In our current example, then, to calculate the table of proporttons
of vote, we could rum:

#4# option a: create frequencg table first

: tel  # object with frequency table
TGP, ;3 creates table of proportions
#4 don't know teave stay wen't vote
FH 0.07490 0.44318 0.46454 0.01738

Alternatively, we could skip the step of creating an object with
the frequency table and run instead:

4 option br do Ut all at once
277 F creates table of proportions
## don't know ieave stay won't vote
St 1.07400 .44318 0.46454 0.61738 7

Based on the proportions in the sample shown in the outputs
above, we can estimate that when the survey was administered,
44% of eligible UK voters intended to vote “leave” and 46% to
vote “stay”; more than 7% of the population was still undecided.

At this time, then, a slightly higher proportion of respondents
intended to vote ‘stay” rather than “leave”.  The propor-
tion of undecided, however, was larger than this difference
{7% > 46%—44%), and thus, the survey results did not provide a
clear prediction of the outcome of the referendum.

lo reality, the referendum turned out to he quite close. The leave
camp received 51.9% of the vote, and the stay camp received 48.1%
of the vote. Thus, the leave camp won with a margin of only 3.8
percentage points (51.9%--48.1%=3.8 p.p.).

3.4 WHO SUPPORTED BREXIT?

We can also analyze the BES survey data to examine the char-
acteristics of Brexit supporters and non-supporters. Specifically,
we can determine how these two groups compare in terms of edu-
cation level and age.

We begin this section by learning how different functions deal
with missing data, and then we learn how to conduct our analysis




* on the observations that do not have missing information. Next,
" to compare the level of education of Brexit supporters to that of
non-supporters, we explore the relationship between leave and
‘. education by creating a two-way table of frequencies and a two-
" way table of proportions. These tables are similar to the ones we
created when exploring the contents of the variable vote, except
that now we examine the contents of two variables at a time.

Then, to compare the age distribution of Brexit supporters to that
of non-supporters, we explore the relationship between leave and
oge. In this case, we do not create a two-way table of frequen-
cies of a two-way table of proportions. Because oge (in years)
can take a large number of distinct values, these tables would be
too large to be informative. Instead, to visualize both age dis-
iributiens and compare them to each other, we create histograms’
of age for supporters and non-supporters. Finally, to summarize
and compare the characteristics of the two age distributions, we
campute descriptive statistics such as the mean, median, standard
deviation, and variance of age for each group.

341 HANDGLUING MISSING DATA

As we saw earlier, missing values are common in survey data.
In the BES dataset, two variables contain NAs, which is how
R represents missing values. The variable {eove has NAs when
respondents were undecided or didn’t intend to vote. The vari-
able education has NAs when respondents refused to provide an
answer. {See the second and fifth observations of the dataframe
shown in the output of beadi; at the beginning of section 3.3.)

Some functions in R automatically remove missing values before
perforang operations; others do not. For example, the function
{: ignores missing values by default. If you want the function
tn include them, you need to specu‘g the optional argument named
= and set it to equal ™ . This asks R not to exclude any
values from the table of frequenaes (See the RECALL in the mar-
gin for a brief overview of how optional arguments work) In the
current example, to create the table of frequencies of education,
including missing values, we run:

on, ex iy 7 tablel) including NAs
HAE 1 2 3 4 5 <NA>

#2045 5781 6277 10676 2696 3425

Based on the output, a little more than 3,400 respondents refused
to provide their level of education. The item nonresponse rate
here, or the proportion of respondents who refused to provide an
answer to this gquestion, was about 11% (3425/30895=0.11).

The function swcants does not automatically exclude missing val-
ues. If a variable contains any NAs, R will not be able to compute
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RECALL: Inside the parentheses of a func-
tion, we can specify optional arguments by
including the name of the optional argu-
ment (without guotes) and sefting it to
equat a particular value. TRUE, FALSE,
NA, and NULL are special values in R and
should not be written in quotes. Finally,
optional arguments are specified after the
required arguments, separated by commas.
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RECALL: In R, the function wiesnii caleu-
lates the mean of a variable. Example:

it

RECALL: The mean of a birary variable
can be interpreted as the proportion of
the observations that have the character-
istic identified by the variable (that have
a value of 1}.

FIGURE 3.3. Example of the type of infor-
mation displayed in RStudio’s help tab.

the average of the variable unless we change the default settings.
For example, run the following:

¢ # mean{) without removing NAs

di4 1] NA

Here, R returns an NA, indicating the presence of missing values,

We can instruct R to remove the NAs before computing the aver-
age by specifying the optional argument named nsiim (which
stands for “NA remove”) and setting it to equal Tk

maeanfbesblesve. na rme= i #F mean(} removing NAs
H#4£11] 0.4882328

Now, R provides the result of the operation. We interpret the out-
put as indicating that, in the BES survey, out of the respondents
who had already made up their minds to vote for one camp or the
other, about 49% were Brexit supporters {0.49x100=49%).

To see how other functions deal with missing values, we can use
the help tab of RStudio (in the lower-right window). This tab
provides descriptions of all the R functions, including the actions
they perform, the arguments they require, and the settings they
use by default as well as how to change them. To read about a
particular function, all we need to do is manually select 'the help
tab, type the name of the function next to the magnifying glass
tcon, and hit enter. (See figure 3.3 as an example.)

Files Plois  Packages | Help | Viewer

Arithmetic Mean

Generic function for the {trimmed) arithmetic mean

mean(x, trim = 0, pa.rm = FALSE, ...)

X An R object..

trim

na.rm a logical value indicating whether NA values
should be stripped before the computation

To remove trom the dataframe all observations with missing values,
we can use the function 5 omit{l. For our current purposes, to

get rid of all observations with at teast one NA from bes, we run:




© # removes ohservations with NAs

The code =200 .+ returns the original dataframe without the
gbserva‘ﬂons that have any missing values. With the assignment
operator < -, we store this new dataframe in an object named bes.
The envmronment {the storage room of the current R session shown
in the upper-right window) should now contain two objects: bes
(the original dataframe) and bes7 (the new dataframe).

A word of caution: The function ne ¢ instructs R to delete
all observations with any missing data. To avoid removing obser-
vations needlessly, before applying this function to a dataframe,
we should make sure that all the variables in the datatrame that

contain any missing values are needed for the analysis. (Instruc~

tions for extracting the variables we want to use in the analysis
from a dataframe are in the ADVANCED TIP in the margin.)

In the case of the BES survey, only two variables contain NAs:
leave and education. We are not interested in the respondents
for whom we have a missing value in legve. They either did not
intend to vote or had not yet made up their minds about Brexit.
And, since we will use education in our analysis, we will need
to exclude respondents who refuse to provide their educationat
hackground. Consequently, applying ns i to bes does not
result in unnecessarily removing any observations.

After using the function aomiil], it is a good idea to (i) look at
a few observations from both dataframes to ensure the function
worked as expected, and (il) compute how many observations were
deleted.

To accomplish the first task, we can use the fenction |

# shows first observations of original dataframe

## vote leave education age
HA leave 1 3 60
HAE 2 leave 1 NA 56
3 stay G 5 73
wH 4 leave 1 4 64
## 5 don't know MNA 2 68
4 6 stay 0 4 85

iy # shows first chservations of new dataframe
; vote leave education age
At leave 1 3 8D

#FH 3 siay 0 5 73
## 4 leave 1 4 64
6 stay 4] 4 85
H#H# 7 leave 1 3 78
#4 8 leave 1 2 5
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it deletes all observations
WLth missing data from a dataframe,
The only required argument is
the name of the object where the
dataframe is stored. Example:

ADVANCED TiP: Recall that i
is the operator used to extract a
selection of observations from a
variable. |t is also the operator
used to extract a selection of
observations from a dataframe. in
both cases, to s left, we specify
what we want to subset (whether
it is a variable or a dataframe),
and inside the square brackets, we
specify the criterion of selection.

To extract a subset of vari-
ables from a dataframe, we can use
the i operator in conjunction with
the function <{i, which combines
values into a vector (as we will see
in detail in chapter 6). Example::

This piece of code will create a new
object, named reduced data, con-
taining a dataframe with the vari-
ables named var{ and var2 from the
dataframe stored in eriginal_dota.
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Comparmg the two outputs above, we observe that, as expected,

amitl) deleted from the original dataframe the second and fifth
observatlons because they both contain at least one NA. {Note
that, by default, R keeps the original row numbers; as a result,
bes? does not have any rows numbered 2 or 5.)

To accomplish the second task, we can use the function :

¢ #F provides dimensions of original datalrame
HH [? | 30895 4

dirmibesly #F provides dimensions of new dataframe
## (1] 25087 4

By deleting observations with missing data, we reduced
the dataset from 30,895 to 25,097 observations. A total of
5,798 observations, or close to 19% of the original observa-

tions, were removed because they contained at least one NA
(30895—-25097="5798 and 5798/30895=0.19).

Before continuing with the analysis, it ts worth noting that remov-
ing observations with missing values from -a dataset might make
the remaining sample of observations unrepresentative of the tar-
get population, thereby rendering our inferences of population
characteristics invalid, Here, for example, if respondents who
refused to provide their level of education were all in favor of
Brexit, our analysis of the new dataframe, bes?, would under-
mine the level of support for Brexit. The statistical methods used
to address this problem are beyond the scope of this book. For
our purposes, we assume that the sample from the BES survey
is representative of all eligible UK voters, with or without the i
observations with missing values.

Going forward, we will analyze the data in the new dataframe,
bes1, which does not contain any NAs (The code tdenttfgmg the
variables will follow the struciure #« i riv # instead of

242 TWO-WAY FREQUENCY TABLES

To see the level of education of Brexit supporters and non-
supporters within the sample, we can create the two-way
frequency table of leave and education. A two-way frequency
table, alse known as a cross-tabulation, shows the number
of ohservations that take each combination of values of two
specified variables.

For example, if X and Y are as defined in the first table below
(the dataframe), the two-way frequency table of X and Y is the
second table below:




i X Y The two-way frequency
table of X and Y s

T 1 01

20 1 values of ¥

30 1 0 1

4 10 values 0 1 2

> 000 of X 1 11

The two-way frequency table shows that in the dataframe:

- there is one observation for which both X and Y equal O (the
fifth observation)

- there are two observations for which X equals 0 and Y equals,

1 (the second and third observations)

- there is one observation for which X equals 1 and Y equals 0
(the fourth observation)

- there is one observation for which both X and Y equal 1 (the
first ohservation).

To produce a two-way frequency table, we use the function t.
just as we did to produce a one-way frequency table. For the twom
way version, however, we need to specify two variables as required
arguments (separated by a commaj}. In the study at hand, to create
the two-way frequency table of leave and education, we rumn:

blaave, 1] catior ) # two-way frequency table
T 1 2 3 4 5
0 498 1763 3014 6087 1898
1 1356 3388 2685 3783 631

In the output above, we can see that leove takes two values (0
or 1) and that education takes five {1, 2, 3, 4, or 5). {Note that
the values of the variable specified as the first argument in the
function are shown in the rows; the values of the second variable
are shown in the columns.) The numbers in each cell indicate the
frequency, or count, of each combination of values in the dataset.
For example, we see from the first cell that in the BES sam-
ple, there were 498 respondents who were not Brexit supporters
{leave=0) and had no educational qualification (education=1}.

Two-way frequency tables can help us discover the relationship
between two variables. For example, in the table above we
observe that among respondents with no educational qualification
(education=1), there were fewer Brexit non-supporters than
supporters (498 non-supporters vs. 1,356 supporters). In contrast,
among respondents with the highest educational gqualification
(education=5), there were more non-supporters than supporters
(1,898 non-supporters vs. 631 supporters).
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fable when two variables are spec-
ified as required arguments {sepa-
rated by a comma). In the output,
the values of the first specified vari-
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able are shown in the culumns
Examp[e it




64

A

AV

combinailon

CHAPTER 3

woeway table of szgmefmns 0w
pariion of abserva

fie

ot vaives of two s

ables,

L the

iy that take sach

sropiablell converts a  two-way
frequencg table into a two-way
table of proportions.  The only
required argument is the output
of the function iabic{] with the
code identifying the two variables
inside the pareatheses (sepa-
rated by a comma). Exampie:

343 TWO-WAY TABLES OF PROPORTIONS

To infer the level of education of Brexit supporters and non-
supporters among all eligible UK veoters, we need to compute
the proportion of individuals in the sample with each combination
of relevant characteristics. Recall, if the sample is representative,
characteristics should appear in similar proportions in the sample
as in the population as a whole,

To calculate the relevant proportions within the sample, we create
a two-way table of proportions of leave and education. A two-
way table of proportions shows the proportion of observations
that take each combination of values of two specified variables.

Let's return to the simple example from the previous subsection.
lf X and Y are as defined in the first table below, the two-way
table of proportions of X and Y is the second table below:

iX Y The two-way table of
11 1 proportions of X and Y is:
70 1 values of Y
3 0 1 0 1

4 1 0 values 0 02 04
5 00 of X 1 ‘ 02 02

The two-way table of proportions shows that in the dataframe:

both X and Y equal ( in 20% of the chservations
X equals 0 and Y equals 1 in 40% of the observations

X equals 1 and Y equals (0 in 20% of the observations
both X and Y equal 1 in 20% of the observations.

1

To create a two-way table of propertions in R, we use the same
function as with the one-variable version: ‘1. Here,
though we need to specify two variables inside the function
i, which is the required argument. By default, R produces
the two-way table of propoertions where the whaole sample is the
reference group (the denominator). Run:

#HF two-waiy table of proportions

> 3 4 5
0.01984 0.07025 0.12000 0.24230 0.07563
0.05403 0.13500 0.10698 0.15074 0.07514

s 1
#4 0
T

Because the whole sample is the reference group, the sum of all
the proportions within the table equals 1. We interpret the first
cell of the table as indicating that 2% of the respondents in the
BES survey (0.02x100=2%) were against Brexit (leave=0) and
had no educational qualification (education=1).




# we wanted to know proportions within subsets of the sample,
we would need to change the reference group of the calculations.
To do so, we specify the optional argument waro and set it to
equal either 1 or 2. If it equals 1, R will use the first specified
variable to set the reference groups. For example, to compute the
proportien of different levels of education within Brexit supporters
and within Brexit non-supporters, we run:

- #HE two-way table of propertions with margin=1

g 23 1 s
w0 003757 013302 0.22740 0.43880 0.14320

Lo 1 011450 0.28608 022672 0.31943 0.05328

Because we included the optional argument ma tand the
first specified variable is legve, the proportions are calculated
within two groups: Brexit non-supporters {legve=0) and Brexit
supporters (feave=1). The proportions in each row now add up
to 1. We interpret the first cell of the table as indicating that
among all Brexit non-supporters in the sample, close to 4% had
no educational qualification (education=1).

Alternatively, if we include the optional argument woigin=2, R
will use the second specified variable to define the reference
groups. For example, to calculate the proportion of support for
Brexit within each educational level, we run:

#dk two-way table of proporiions with margin=2

et 12 3 s 5

F 0 0.26861 0.34220 052886 5.61648 0.75049

# b 073139 0.65774 0.47114 (.38352 0.24951

The new proportions are calculated within five groups, one for
each level of educational attainment. The proportions in each
column now add up to 1. We interpret the first cell of the table as
indicating that among respondents with no educational qualifica-
tion {education=1), about 27% did not support Brexit {{eave=0)}.

Twa-way tables of proportions can also help us discover the rela-
tlonship between two variables. For example, in the previous
table, we find that ameng respondents with no educational qual-
ification (education=1), the majority are Brexit supporters {27%
non-supporters vs. 73% supporters). This phenomenon reverses
with higher levels of education. Among respondents with the
British equivalent of a high school diploma (education=3), Brexit
supporters are in the minority by a slight margin (53% non-
supporters vs. 47% supporters). Among respondents with the high-
est educational qualification (education=5}, Brexit supporters are
in the clear minority (75% non-supporters vs. 25% supporters).
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Exampie:

If the BES sample is representative of atl eligible UK voters,
we can infer that voters with low levels of education were likely
to support Brexit, and voters with high levels of education were
likely to oppose Brexit.

3.4.4 HISTOURAMS

To compare Brexit supporters to non-supporters in terms of age,
we can visualize the two age distributions by creating histograms,
A histogram is a graphical representation of the variable's dis-
tributlon, made up of bins (rectangtes) of different heights. The
position of the bins along the x-axis {the herizontal axis} indicates
the interval of values. The height of the bins represents how often
the variable takes the values in the corresponding interval.

For example, if X={11, 11, 12, 13, 22, 26, 33, 43, 43, 48}, the
histogram of X is the graph in the margin. I shows that the
variable X contains:

- four observations in the interval from 10 to 20

- two observations in the interval from 20 to 30

- one observation in the interval from 30 1o 40

- three observations in the interval from 40 to 50.

The R function to create the histogram of a variable is !
the case at hand, to produce the histogram of age, we run:

# creates histogram
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bes1$age

After running this piece of code, R will display the graph shown
above in the plots tab of RStudio (the lower-right window). If R
gives you the error message “Error in plot.new(): figure margins
too large” instead, try making the lower-right window larger and
then re-run the code that creates the plot. (Note that the graphs
in the book might look a little different from those you see on your




computer. To make the book easier to read, we often modify the
default color schemes and styles of graphs. The overall patterns
should be the same, however.)

Based on the histogram above, we see that the survey does
not have any respondents below the age of 15. (The minimum
value this variable takes is actually 18.) This makes sense since
researchers purposely reached out onky to eligible voters. We can
see that the distribution roughly follows a bell curve, although it
is skewed to the left. (See TIP in the margin for an explanation
of what we mean by skewed.) The largest segment (the tallest
bin) is made up of respondents between 65 and 70 years old.

The histogram above includes the age of both supporters and non-
supporters. To compare the age distribution of Brexit supporters,
to that of non-supporters, we need to create two histograms, one
for each group. For each of these histograms, we need to select
only the observations of age that meet the criteria (the respondent
must be a supporter or a non-supporter, respectively). For this
purpose, we can use the | operator in conjunction with the ==
operator, just as we did in chapter 2. {See subsection 2.5.3.) Then
we can apply the riisif) function to each subset. All together, the
code to produce the two histograms is:

L HH create histograms
st {esi%age{bes! # for non-supporiers
# for supporters

(=] [ee]
3 s 52,
s 8 5 W
3 =
o [=2
¢ o ? o
- 2| —_ Ol

2 2

(= [

[ [

= 2

=] ]

o - o

0 20 40 &80 80 100 o 40 60 80 100

bes1$age[besifleave == 0] bes1$age(besitieave == 1]
Looking at the histogram for non-supporters (the ane on the left),
we see that the age distribution is relatively uniform and that the
largest segment is between 20 and 25 years old. In contrast, the
- histogram for supporters (the one on the right) shows that the age
“distribution approximates a bell curve, although clearly skewed to
.the left, and that the targest segment is between 65 and 70 years
old. Based on the visual comparison of the age distributions of
-the two groups, we conclude that Brexit supporters tended to be
‘older than non-supporters.
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TIP: A bell curve is skewed to the left if
the tail on the left side of the distribution
is longer than the tail on the right side {as
in the sotid-line distribution below] and is
skewed to the right if the opposite is true
(as in the dashed-line distribution below).

skewed to the left

skewed fo the right

RECALL: To extract a selection of obser-
vations from a variable, we use the ' oper-
ator. To its left, we specify the variable we
want to subset. Inside the square brack-
ets we specify the criterion of selection,
using for example the relational opera-

tor ==, Only the observations for which
the criterion is true are extracted. Exam-
ple: o e extracts

anly the ohservations of the variable vor]
for which the variable varZ equals 1.

TI®: In the uniform distribution, ail values
between the minimum and the maximum
are egually likely.

min value max vaiue
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345 DENSITY HISTOGRAMS

Arguably a better option for visualizing the differences between
the age distributions of the two groups is to use density his-
tograms. Density histograms are especially useful for comparing
groups with substantially different numbers of observations. In a
density histogram, the height of each bin indicates the density of
the bin, defined as the proportion of the observations in the bin
divided by the width of the bin. This is true because the area of
each bin (rectangle} is equivalent to the propertion of observa-
tions that fall in the bin, that is, that take any of the values within
the interval identified by the position of the bin on the x-axis.

Here is the mathematical reasoning. The area of a rectangle or
bin is computed as follows:

-

area of the bin = height of the bin x width of the bin

To determine the height of each bin, we {i) rearrange the formula
above and (ii) substitute the area of the rectangle with the propor-
tion of observations because, as mentioned, in density histograms
these two terms are equivalent:

area of the bin

hetght of the bin = m

_ proportion of observatians in the bin
h width of the bin

== density of the bin

Let’s return to the simple example from the previous subsection. If
X={11,11,12, 13, 22, 26, 33, 43, 43, 48}, the density histogram
of X is the graph in the margin. As we can see, the height of the
first bin is 0.04. Here is why:

- out of the 10 observations in the variable, 4 are in this bin; the
proportion of observations in the bin is, therefore, 0.4 or 40%
{4/10=0.4)

- the width of the bin is 10 because the bin is positioned from
10 to 20 on the x-axis (20—-10=10)

- this results in a density of 0.04 (proportion/width=0.4/10==0.04).

Density histograms have two usetul properties. First, if the width
of the bins is constant, the relative height of the bins implies the
relative proportion of observations that fall in the bins. In other
wards, if one bin is twice as high as another, it means that it
contains twice as many observations.




For example, the density histogram above shows that in the vari-
able X, there are:

- twice as many values in the interval from 10 to 20 as in the
interval from 20 to 30

- twice as many values in the interval from 20 to 30 as in the
interval from 30 to 40

- three times as many values in the interval from 40 to 50 as in
the intervat fram 30 to 40.

Second, because the area of each bin equals the proportion of
observations in the bin, the areas of all the bins in the density

histogram add up to 1.
1 o
For example, the sum of the areas of all the bins in the density

histogram above is:

37 heighty, x widtheia = (0.04x10) + (0.02x10)
&l vins + (0.01x10) + (0.03x10) = 1

Why are density histograms a better option than histograms for
visualizing the differences between two distributions? Unlike
frequencies, the unit of measurement of densities is compara-
ble across distributions with different numbers of observations.
Densities are related to proportions {percentages), which are not
affected by changes in the total number of observations. In con-
trast, frequencies are retated to counts, which are affected by
changes in the total number of observations. As a result, whenever
comparing two distributions with substantially different numbers
of observations, it is better to use density histograms than his-
tograms.

To illustrate this, let's compare the age distribution of respondents
who have no educational qualifications with the age distribu-
tion of respondents who have an undergraduate degree but no
postgraduate degree. Because the first group of respondents is
much smaller than the second, this comparison highlights the
advantages of using denstty histograms. As we saw earlier, in
the BES survey only about 2,000 respondents have no educa-
tional qualification (education=1), but more than 10,000 have an
undergraduate degree as their highest educational qualification
(education=4).

To compare these two distributions, let's start by creating his-
tograms where the height of the bins reflect frequencies:

## create histograms

117 # wi no qualifications
L) #F wf undergraduate degree
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i creates the density histogram
of a variable when the optional
argumem beg s oset to equal

~i. The only required argument
is the code Ldenttfgtng the vari-
able Exampi Ferdids

TIP: Here, to.facilitate the comparison of
the heights (or densities) of the bins across
the two histograms, we purposely made
hoth y-axes display the same range of val-

ues {from 0 to 0.05).
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i

Is the proportion of respondents between 65 and 70 years old
among those with no qualifications equivalent to the proportion
of respondents in that age group among those with an undergrad-
uate degree? Looking at the two histograms above, it is hard to
say. The large difference in the size of the two groups makes com-
parisons difficult. To more easily compare these two distributions,
we can create density histograms.

To create a density histogram in R, we also use the hisi{i function,
but we need to set the optional argument tr¢q (which stands for
“frequencies”) to "4 In the current example, to produce the
density histograms of age for respondents with no qualifications
and for respondents with undergraduate degrees, we run:

## create deﬂsug E"ustoglam'i

# w/ no quatifications

# w/ undergra{iua‘te degree

density

002 003 004 005

L

0.02 093 0.04 0.05

L

0.00 001
0.00 0.01

é 20 40 6.0 8-0 100 Q 20 40 50 80 100
bes1$age[besi$education == 1] best$age[besi$education == 4]

Looking at the density histograms, we can clearly see that the
proportion of respondents between 65 and 70 years old among
those with no qualifications (in the graph on the left) is about
twice as large as the proportion of respondents in that age group




among those with an undergraduate degree (in the graph on the
right). We can draw this conclusion by just comparing the heights
(or densities) of the bins across the two histograms because in
hoth histograms the bins have all the same widths (5 years).

Now that we have learned the advantages of density histograms,
let's return to exploring the distributions of age for Brexit sup-
porters and non-supporters. To produce the two relevant density
histograms, we run:

#+# create density histograms

# for non-supporters
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bes1$age(besifleave == 0] besifage[bhesi$ieave == 1]
Here we can see, for example, that the proportion of respondents
between 20 and 25 years otd among Brexit non-supporters {in the
graph on the left) is close to three times the proportion of respon-
dents in the same age group among supporters (in the graph on
the right). In addition, the proportion of respondents between 65
and 70 years old among Brexit supporters (in the graph on the
right) ts about one and a half times the proportion of respondents
in that age group among non-supporters (in the graph on the left).

In practice, we rarely care about the exact value of each density.
We usually just care about the shape of the histogram as demar-
cated by the height of the bins. We use this shape o describe or
illustrate the different distributions. (See figure in the margin.)

340 DESCRIPTIVE BTATIBTICS

Another option for measuring the differences between Brexit sup-
porters and non-supporters in terms of age distribution is to
compute and compare descriptive stalistics. Descriptive statis-
tics numerically summarize the main traits of the distribution of
a variable,
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RECALL: The average, or mean, of a vari-,

able equals the sum of the values across
alt observations divided by the number of
observations. If the variable is non-binary,
the mean should be interpreted as an aver-
age, in the same unit of measurement as
the variable. If the variable is binary,
the mean should be interpreted as a pro-
portion, in percentages after multtplgmg
the result by 100. In R, #{; calcu-
lates the mean of a varLabie. Example:

TIP: If we were interested in calculat-
ing the average age among afl respon-
dents of the BES survey, we would run
He 1, without subsetting age.

The median of a vartable s the walae 0

s oof the distribution thet divides

the data into we equal-size groups
1 jrasety

siethianiy caleculates the  median
of & variabte. The only required
argument is the code identi-
fying the variable. Example:

We can use two different types of descriptive statistics:

- Measures of centrality, such as the mean and the median, sum-
marize the center of the distribution. (See the top figure in the
margin, which shows two distributions that are tdentical except
for their centrality.)

- Measures of spread, such as the standard deviation and the
variance, summarize the amount of variation of the distribution
relative to its center. (See the bottom figure in the margin,
which shows two distributions that are identical except for their
spread.)

In chapter 1, we saw how to compute and interpret the mean of a
variable. (See section 1.8.) In the running example, the code to
compute the average age of each group is:

#F#H compute mean

15 # for non-supporters

111 # for supporters

a3 [1] 55.06823

Based on the results above, the average Brexit non-supporter
was 47 years old, while the average supporter was 55 years old.
This means that Brexit supporters were eight years older than
non-supporters, on average {b5—47=8).

We can alse describe the center of a distribution by using the
median, The median is the value at the midpoint of the distribu-
tion that divides the data into two equal-size groups {or as close
to it as possible). When the variable contains an odd number of
observations, the median is the middle value of the distribution.
When the variable contains an even number of observations, the
median is the average of the two middle values.

For example, if X={10, 4, 6, 8, 22}, the median of X is 8. To see
this more clearly, we need to sort the values of X in ascending
order {as they would be in the distribution). We end up with
{4, 6, 8, 10, 22}. Now we clearly see that the vatue in the middle
of the distribution is 8.

Unlike the mean, the median should always be interpreted in the
same unit of measurement as the values in the variable, regardless
of whether the variable is binary or non-binary.

The R function to calculate the median of a variable is mgdiani
The only required argument is the code identifying the variable.
In the running example, to calculate the medians of the two age
distributions, we rum:

SR




L} # for non-supporters

1Y # for supporters

The median Brexit non-supporter was 48 years old, while the
median supporter was 58 years old. In other words, about half of
Brexit non-supporters were 48 years old or younger, and about
half of supporters were 58 years old or younger.

In the case of the age distributions here, the mean values {47 and
55) are very similar to the median values {48 and 58),, but this
is not always true. One important distinction between the two
statistics is that while the mean is sensitive to outliers {extreme
values in the variable), the median is not. If, for example, we
replaced the oldest Brexit supporter aged 97 with a Brexit sup-
porter aged 107, the median value would remain the same because
the value of the observation in the middle of the distribution would
not have changed. In cantrast, the new mean would be higher than
the original, since the sum of all the observations (the numerator
of the formula) would be 10 units larger.

To describe the amount of variation relative to the center of a
distribution, we can use the siandard deviation. Mathematically,
it is the result of the following calculation:

sd(x) = f == XS
\/ (=X + =X+ (%= X)?
n

where:

sd(X) stands for the standard deviation of X

X; stands for a particular observation of X, where i denotes the
position of the aobservation

X stands for the mean of X
n is the number of observations in the variable
- 30 (X:=X)? means the sum of all (X;—X)? from i=1 to i=n.

I

Roughly speaking, the standard deviation of a variable provides
the average distance between the observations and the mean {in
the same unit of measurement as the variable). To hetter under-
stand this, let's look at a simple example step by step.

- |
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If X={2. 4, 6} and the unit of measurement of X is miles:

- The average of X (including its unit of measurement) is:
RECALL: The unit of measurement of the

mean of a variable is the same as the unit ny 21446 12
of measurement of the variable, when the X = Z! 174 Tt = — = 4 miles
variable is non-binary. n 3 3

- For each i, we can calculate the term X; — X, which gives
us a sense of the distance between each observation and
the mean of X:

- fori=1 X;—X =24 = -2 miles
- for i=2; Xo=X = 4—4 = 0 miles
- for i=3 Xa=X = 6—4 = 2 miles

- Note that the term X;—X above can result in both neg-
ative and positive numbers. [f we calculated the average
of this term, positive distances would cancel out nega-
tive distances. We do not want such cancellation, since
we are trying to measure the average deviation from the
center of the distribution. To avoid the cancellation, we
need to get rid of the signs. To do so, we square the
term X;—X. The resulting term, (X;—X)?, provides the
squared distance from the mean for each ohservation:

- Hor i=1: (X-X) = (2-4)? = (-2)? = 4 miles’
- for i=2: (Xo—X)? = (4—4)2 = (0)? = 0 miles
< Hor i=3: (XG—X)2 = (6—4)2 = (2)? = 4 miles”

- To compute the average of the squared distances across
all observations, we add them up and divide them by the
number of observations:

S (X=X)t (X X0 06-X) 4 (X=X
n 3

= ij-——g—ij = 7.67 miles’

- To return to the same unit of measurement as the original
variable, we need to get rid of the square. To do so, we
calculate the square root of the average of the squared
distances across all observations:

sd(X) = -Z:—’—J——)—{—————)S—— V2,67 miles® = 1.63 miles

n

- We can now interpret this number as the average distance
between the observations and the mean in the same unit
of measurement as the original variable {miles here).
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In short, a smaller standard deviation indicates the observations

are closer to the mean, on average. The distribution is concen-

trated around the mean, and consequently, the density is higher
at the center. Analogously, a larger standard deviation indicates )
that the observations are farther from the mean, on average. The
distribution is dispersed, and consequently, the density is lower
at the center. For example, in the top figure in the margin, the
standard deviation of the dashed distribution is smaller than the
standard deviation of the solid distribution,

The R function to calculate the standard deviation of a variable sdit calculates the standard devi-
is s<i;. The only required argument is the code identifying the ation of a veriable. ~ The only
variable. Therefore, to compute the standard deviations of the age required argument is the cade iden-

tifying the

L

distributions of Brexit supporters and non-supporters, we run: Va:_fiable' Example:

## compute standard deviation
: pave == 11 FF for non-supporters

TIP: if we were interested in computing
the standard deviation of the distribution
L , ) of age among ol respondents of the BES
o 1iy # for supperters survey, we would run safhiss 1 hage]

s 1] 17 3464

#AE (1] 14.96106
Among Brexit non-supporters, the average difference between
respondents’ age and the mean age is 17 years. Among sup-
porters, the average difference is 15 years. Hf we look back at
the two density hisiograms (at the end of subsection 3.4.5), we
can see that the distribution of supporters s more concentrated
around the mean than the distribution of non-supporters. 1t makes
sense, then, that the standard deviation of the age disiribution of
supporters is smaller than that of non-supporters.

One final note about standard deviations: Knowing the standard
deviation of a variahle helps us understand the range of the data,
especially when dealing with bell-shaped distributions known as
normal distributions.

As we will see in detail later in the book, one of the distinct
characteristics of normal distributions is that about 95% of the
ohservations fall within two standard deviations from the mean
{that is, are between the mean minus two standard deviations
and the mean plus two standard deviations). For example, we
know that the average age of Brexit supporters is 55, and the
standard deviation of their age distribution is 15 years. If the
age distribution of Brexit supporters were a perfect normal distri-
bution, then 95% of Brexit supporters would be between 25 and
85 years old (55—2x15=225 and 554+2x15=85). Looking at the
histogram shown in the bottom figure in the margin, this seems
about right, although the histogram is skewed to the left, and
thus, the formula does not apply exactly.
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The variance of a variable is the square of We sometimes use another measure of the spread of a distribution
the standard devtation called variance. The variance of a variable is simply the square
of the standard deviation:

var(X) = sd{X)?

where:
- var(X) stands for the variance of X
- sd{X) stands for the standard deviation of X.

varly calculates the variance of To calculate the variance of a variable in R, we can use the func-
a variable.  The only required tion var{y or simply square the standard deviation of that variable
argument is the code identi- using the * operator. For example, to calculate the variance of

the age distribution of Brexit supporters, we can run either one
of the fallowing lires of code:

fying the variabte. Example:

WP v

1} # calculates variance

is the operator that raises a num- )
ber to a power. The number that 3 [H 223.8334
follows it is the power, that is, the el i > calculates square of sd
number of fimes we want to muiti- Hot [” 7738334
ply the preceding number by itself. :
Example: :°. raises 3 to the 2nd

We are usually betier off using standard deviations as our mea-
sure of spread. They are easier to interpret because, as we just
saw, they are in the same unit of measurement as the variable.

* {The variance of a variable is in the unit of measurement of the
variable squared.)

power (3°=9).

RECALL: =5r1i; calculates the square root If we know the variance of a variable, we take its square root to

of the argument specified inside the paren- compute the standard deviation, usmg the sgrt{} function:
theses. Example: s

1} # square root-of variance

44 1] 1496106

Not surprtsmg[g runnLng this code produces the same output as
teave==s=1]] on the previous page.

3.5 RELATIONSHIP BETWEEN EDUCATION
AND THE LEAVE VOTE IN THE ENTIRE UK

Based on Sascha O. Becker, Thiemo Fet- In the previous section, in our analysis of the data from the BES
zer, and Dennis Novy, "Who Voted for survey, we noted that respandents who had higher levels of educa-
Brexit? A Comprehensive District-Level tion were less likely to support Brexit. In this section, we examine
Analysis,” Economic Policy 32, no. 92 .. }

(2017): 601-50. the actual referendum results to see whether a similar relation-

ship can be identified in the whole population of UK veoters. In
particular, we use district-level data to explore how the propor-
tion of residents with high levels of education (who earned at
least an undergraduate degree or equivalent) relates to the vote
share recelved by the leave camp. For this purpose, we learn
how to create Scatter plots to visualize the relationship between
two variables and how to compute the correlation coefficient to
summarize their linear relationship numerically.




For this anatysis, we use a dataset that contains the referendum
results on Brexit aggregated at the district level. The dataset
is provided in the file “UK_districts.csv”. Table 3.2 shows the
names and descriptions of the variables included. {Note again
that the dataset we use in this section is not from a sample of the
population but rather from the entire population of interest)

variable description
name name of the district
leave vote share received by the leave camp in the

district {in percentages)

high_education  proportion of district’s residents with an
undergraduate degree, professional qualifi-
cation, or equivalent (in percentages)

In preparation for this section’s analysis (assuming we have
already set the working directory), we read and store the dataset
by running:

<"1 # reads and stores data

# shows first observations

HA name teave  high_education
#F# Birmingham  50.42 2298
# 2 Cardift 39.98 3233
## 3 Edinburgh City  25.56 21.92
## 4 CGlasgow City 3341 2591
5 Liverpool 41.81 2244
#H# B Swansea  51.51 2585

Based on table 3.2 and the output above, we learn that each
observation in the dataset represents a district in the UK, and
that the dataset contains three variables:

- name is a character variable that identifies the district

- leave is a numeric non-binary vartable that captures the vote
share received by the leave camp in each district, measured in
percentages

- high_education is a numeric non-binary variable that captures
the proportion of residents in the district, measured in percent-
ages, that had undergraduate degrees, professional qualifica-
tions, or the equivalent.

We interpret the first observation as representing the district
called Birmingham, where leave received a little more than 50%
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FIP: In an individual-ievel analysis, the
unit of observation is individuals. By con-
trast, in an aggregate-tevel analysis, the
unit of observation is collections of indi-
viduals. Here, our unit of observation is
districts; each observation represents the
residents of a particular district.

TABLE 3.2. Description of the variables in
the UK district-level data, where the unit
of observation is districts.

RECALL: If the DSS folder is saved
directly on your Desktop, to set
the working directory, you must run
et if you have a

Mae and se
if you have a Windows computer {where
user is your own username). If the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on how
to set the working directory.

E
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of the vote share, and about 23% of residents had a high level of
education (at least an undergraduate degree or equivalent).

To determine the number of observations in the dataset, we use
the function dunis

We find that the original dataframe contains information about
382 districts.

Although we did not see any NAs in the first six observations
shown by resd() above, there might be some missing values in
the rest of the data. {Note that the description of variables does
not aiways explicitly report on NAs.} In case there are any NAs
in the dataset, we apply the function na.oinit) to the dataframe.
Because we will use all the variables in our analysis, this will
not eliminate observations unnecessarily.

1 # removes observations with NAs

As is common practice, we use dimni)
vations were deleted:

to find out how many ohser-

st #F provides dimensions: rows, columns

#1380 3

Deleting observations with missing values reduces the dataframe
to 380 districts. This means that there were only two districts
with at least one NA.

351 SCATTER PLOTS

A scatter plot enables us to visualize the relationship between
two vartables by plotting one variable against the other in a two-
dimensional space.

; .

:EE.EJH[.; LR R Rk

Imagine we have the dataframe shown below with two variables
of interest, X and Y. The scatter plot of X and Y is the graph
shawn te its right:

P XY v
T4 2 5 s (8.3
2 8 5
310 3 3 w {13
2 w (42
0-




This dataframe contains only three observations. We can think
of each observation 7 consisting of two coordinates in the two-
dimensional space. The first coordinate indicates the position
of the point on the x-axis (the horizontal axis), and the second
coordinate indicates the position of the point on the y-axis {the
vertical axis). Let's look at the first ebservation (the observation
for which i=1). The value of Xj is 4, which means that the dot
for this observation should be lined up with the number 4 on the
x-axis. The value of Y7 is 2, which means that the dot for this
observation should be lined up with the number 2 on the y-axis.
Together, these two coordinates create the dot (4,2).

To create a scatter plot in R, we use the pioti function. It requires
that we specify two arquments in a particular order: (1) the vari-
able we want on the x-axis and (2) the variable we want on the-
y-axis. Alternatively, we can specify which variables we want to
plot on the x- and y-axes by including the names of the arguments
in the specification, which are = and y, respectively. Then, the
order of the arguments no longer matters. To create the scatter
plot of high_education and leave in the UK district-level dataset,
we can run any of the following pileces of code:

) # scatter plot X, Y

¢} # scatter plot

by # scatter plot
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sieti  creates the scatter plot
of two variables. It requires
two  arquments, separated by a
comma, in this order: (1) the
variable to be plotted on the
x-axis and (2) the variable to be
plotted on the y-axis. Example:

cierhy v gfoathy vork, As
alternative, we can specify
which variables we want to plot
on the x- and y-axes by including
the names of the arguments in
the specification, which are
and 1, respectively. For example,
both of these pieces of code will
create the same scatter plot:
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2 TIP: In R functions, the order of the argu-
ments only matters when we do not specify
the name of the arguments.
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most recentlg created graph. To add
a vertical line, we set the argument
v to equal the value on the x-axis
where we want the line. To add a
horizontat line, we set the argument
i+ to equal the value on the y-axis
where we want the line. To change
the default solid line to a dashed
tine, we set the optiona{ argu-
ment lis: to equai ¢! . Exam-
ples: 4 and i

{+ adds a straight lme to the

Just as in the simple example, every dot in the scatter plot above
represents an observation, a district in this case. For example, the
red dot is the observation that represents the district of Birming-
ham, where about 23% of residents had a high level of education,
and close to 0% of the votes were cast in support of Brexit.

What can we learn from this scatter plot about the relationship
between these two variables? Are districts with low proportions
of highly educated residents likely to support Brexit? What about
districts with high propartions of highly educated residents? An
intuitive way to answer these guestions is by finding the averages
of both variables on the graph and using them to divide the graph
into four parts {in our imagination or otherwise).

To add straight lines to a graph in R, we can use the & ]
function. To add a vertical line, we set the argument « to equal
the value on the x-axis where we want the line drawn. To add
a horizontal line, we set the argument » to equal the value on
the y-axis where we want the line drawn. By default, R draws
solid lines. To draw dashed lines, we set the li:; argument {which
stands for “line type”) to equal dasied’. For example, go ahead
and run: o

## adé stsaaghi dashed hnes to the most recen% gra oh
") 2 vertical
P # horlzsntal

disifleave
B0

60

40

20

0 20 40 60 80
dis1$high_education




If you run the code in the sequence provided here, you should see
the graph above. This is the scatter plot of high_education and
leave we created earlier with the function picilt, with two added
dashed lines: a vertical line marking the mean of high_education
and a horizontal line marking the mean of leove. (Note that the
function #hline{; will add lines to the most recently created graph,
but R will give you an error message if you have yet to create a

graph.)

As shown in the figure in the margin, the dashed lines divide the
graph into four quadrants (from top right and counterclockwise):

- Quadrant I values of the ohservations are above both means

- Quadrant Ik: observations have a value of high_education below
the mean but a value of leave above the mean

- Quadrant liI: values of the observations are below both means

- Quadrant IV: observations have a value of high_education above
the mean but a value of leave below the mean

Now we can more easily answer our initial questions:

- Are districts with low proportions of highly educated residents
likely to support Brexit? In other words, are districts with
values of high_education helow the mean likely te have values
of leave above the mean?

Looking at the bulk of the data in the scatter plot above, we
determine that the answer is yes. Here is the logic: the districts
with values of high_education below the mean are in quadrants
Il and Ill. Between these two quadrants, quadrant il contains
a higher proportion of the data (more dots). This means that
districts with values of high_education below the mean tend to
have values of leave above the mean.

- Are districts with high proportions of highly educated residents
likely to support Brexit? [n other words, are districts with
values of high_education above the mean likely to have values
of leave also above the mean?

Looking at the bulk of the data again, we see that the answer
is no. The districts with values of high_education above the
mean are in quadrants | and |V. Between these two quadrants,
quadrant |V contains a higher proportion of the data. This
means that districts with values of high_education above the
mean tend to have values of leave below the mean.

We conclude that, at the district level, a higher proportion of
highly educated residents is associated with a lower proportion
of Brexit supporters. This is consistent with the individual-tevel
relationship we observed using the BES survey data from a sam-
ple of the population.

o
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352 CORRELATION

ion

The correlation coeflicient summarizes the While the scatter plot provides us with a visual representation
direction irengi P ANERL 9550~ of the relationship between two variables, sometimes it is helpful
oo ” to summarize the relationship with a number. For that purpose,
we use the correlation coefficient, or correlation for short. Before
looking into how to compute this statistic, let's get a sense of how

fo interpret it.

The correlation coefficlent ranges from -1 to 1, and it captures
the following two characteristics of the relationship between two
variables:

ear assoriation,

(o linear assocint

tincieases us the - the direction of their linear association, that is, the sign of
the slope of the line of best fit (which is the line that best
summarizes the data)

closer o the line of

Hnear sssocistion becomes

- the strength of their linear association, that is, the degree to
which the two variables are linearly associated with each other,

While the direction of the linear association determines the sign of
the correlation, the strength of the linear association determines
the magnitude of the correlation. Let’s look at this in detail.

Depending on the direction of the linear association, that is,
whether the line that best fits the data slopes upward or down-
ward, the correlation wilt be positive or negative:

. - The correlation is positive whenever the two variables move in
o U the same direction relative to their respective means, that is,

Lo when high values in one variable are likely to be associated
with high values in the other, and low values in one variable
are ltkely to be assoclated with low values in the other. In
other words, the correlation is positive whenever the slope of
o the line of best fit is positive. For example, see the top scatter
PR plot in the margin and the line of best fit that we added. Is the
o slope positive or negative? Positive. On average, higher values
of X are associated with higher values of Y. This means that
the correlation between X and Y is positive.

- The correlation is negative whenever the two variables move in
opposite directions relative to their respective means, that is,
SR when high values in one variable are likely to be associated
s with low values in the other, and vice versa. For example, as we
R saw in the previous subsection, the variables high_education
and leave in the UK district-level dataset move in opposite
directions relative to their respective means. As shown in the
bottom scatter plot in the margin, the slope of the line of best
fit is negative. On average, higher values of high_education
are associated with lower values of leave. This means that the
carrelation between high_education and leave is negative,
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Depending on the strength of the linear association, that is, how FIGURE 3.4. Scatter plots of variables

close the observations are to the line of best fit, the absolute with weaker to stronger linear associa-
value of the correlation coefficient will be closer to 0 or to 1: tions. As the observations move closer to s
the line of best fit, the absolute value of §
the correlation coefficient increases. From |

. . . . . left to right, the correlations are approxi-
is approximately 0 when the linear relationship between the mately 0, 0.5, 0.8, and 1.

|
|
two variahles is non-existent. This is the case in the first scatter \
plot of figure 3.4 above. Here, we would have a hard time fitting ;
a line that would adequately summarize the data. |

- At one extreme, the absolute value of the correlation coefficient

- At the opposite extreme, the absolute value of the correlation
coefficient is exactly 1 if the association between the two vari-
ables is perfectly linear. This is the case in the last scatter
plot of figure 3.4, where the points are all on a single line.

- All other linear relationships resuit in a correlation coefficient
with an absolute value between 0 and 1. As the observations
move closer to the line of best fit, the linear association hetween

the two variables hecomes stronger, and the absolute value

of the correlation coefficient increases. See, for example, the
progression from left to right in figure 3.4.

&
e
Putting it all together, the correlation between two variables FIGURE 35. Scatter plots of variables

direction of the linear association between the variables. And the From l{'}gﬁ to right, the fogeéagmons are -1,
absolute value of the correlation depicts the strength of the linear -08, -0, approximately 0, 0.3, 0.8, and 1.
association between the variables. (See figure 3.5 above, which
tllustrates how the value of the correlation coefficient depends on
the direction and strength of the linear association between the

1
ranges from -1 to 1. The sign of the correlation indicates the with correlations ranging from -1 to 1.
two variables )




84  CHAPTER 3

The z-score of an observation s the num
ber of standard deviati

s above or below the mean

ans the obse

LN

How is the correlation coefficient computed? In order to
understand the formula for the corretation coefficient, we
first need to learn about z-scores. The z-score of an obser-
vation is the number of standard deviations the observation
is above or below the mean. Specifically, the z-score of
each observation of X is defined as:

x . XX
D A0

where:

- Z¥ stands for the z-score of observation X;

- X; stands for a particular observation of X, where |
denotes the position of the observation

- X stands for the mean of X

- sd(X) stands for the standard deviation of X.

Returning to the example we saw when learning about stan-
dard deviations, if X={2, 4, 6}, then X=4 and sd{X)=1.63
(as we computed earlier), and the z-score of each ohserva-
tion of X is:

- fori=1: ZX = Bt = 31 =123

- for j=2: Zf:;”%{%:%%gzo
2 X=X a4

- fori=3 Zf = 55 = 5 =123

The unit of measurement of z-scores is always in standard
deviations, regardless of the unit of measurement of the
origitnal variable. In addition, the sign of the z-score indi-
cates whether the ohservation is above or below the mean.
For example, we interpret the three z-scores above as fol-
lows:

- for i=1. Z{¥=-1.23 standard deviations; indicates that
X; is a little more than one standard deviation below the
mean of X

- for i=2: Zf=0 standard deviations; indicates that X;
is zero standard deviations away from the mean of X
because X5 and the mean coincide in value

- for j=3; Z§(=?.23 standard deviatiens; indicates that X3

is a little more than one standard deviation above the
mean of X.




To compute the correlation between two variables, X and
Y, we first convert the observations of both variables to
z-scores. Then, the correlation coefficient is calculated as
the average of the products of the z-scores of X and Y.
Mathematically, the correlation between X and Y is:

noZxxZY
cor{X,Y) = mz’ﬂ P24
n .
)2y + ZF¥xZY 4+ ZXxZY
- n
where:

- cor(X,Y) stands for correlation between X and Y

- Z¥ and ZY denote the z-scores of observation i for X

and Y, respectively

- YL, ZXxZY stands for the sum of the product of the
z-scores of X and Y from i=1 to i=n, meaning from the
first observation to the last one

- nis the number of observations.

For example, if X and Y are as defined in the first two
columns of the table below, the z-scores of X and Y are as
shown in the adjacent two columns:

i Xy zX zZY
12 6 123 123
2 4 4 0 0
36 2 123 -123

And the correlation coefficient between X and Y is:

" ZXxZY
cor(X, Y)=—~~~~~w~~~z’:1 PR
n
_ 123x12340x0 11.23x-123
= 3 =-

The product of the two z-scores for each observation is:

- positive when both z-scores are positive (the observation
is above the mean in both variables)

- positive when both z-scores are negative {the observation
is below the mean in both variables)

INFERRING POPULATION CHARACTERISTICS
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- negative when one z-score is negative, but the other is
positive (the abservation is below the mean in one vari-
able but above the mean tn the other),

As a result, the sign of the correlation coefficient will be:

- positive when the two variables tend to move in the same
direction relative to their respective means, that is, when
above-average values in one variable are usually asso-
ciated with above-average values in the other {both z-
scores are positive), and when below-average values in
one variable are usually assoctated with below-average
values in the other (both z-scores are negative)

- negative when the two variables tend to move in the
opposite direction relative to their respective means, that
is, when above-average values in one variable are usu-
ally associated with below-average values in the other
(the tweo z-scores are of opposite signs).

In the formula in detail above, we manually computed that, if
X={2, 4, 6} and Y={6, 4, 2}, the correlation between X and ¥
is -1. What does this telt us?

- The negative sign indicates that the two variables tend to move
in opposite directions relative to thelr respective means. (As we
can see in the scatter plot of these two variables shown in the
margin, the slope of the line of best fit is indeed negative.)

- The absolute value of 1 indicates that the two variables have
a perfect tinear association with each other, {As we can see in
the same scatter plot, all the points are on the line of best fit))

Note that this is an extreme example. Most correlations are
between -1 and 1, not including the endpoints. If we change
the second observation in the example above to (4,0) instead of
the original (4,4}, then the new correlation between X and Y is
about -0.65. As we can see in the new scatter plot shown in the
margin, while the slope of the line of best fit continues to be neg-
ative, now the points are no longer on the line of best fit. This
means that the negative linear association is no longer perfect,
which explains why the correlation is no longer exactly -1.

To calculate the correlation coefficient between two variables in
R, we use the function /. Inside the parentheses, we must

identily the two variables (separated by a comma and in no par-
ticular order). For example, 1o calculate the correlation between
high_education and {eove, we run:




INFERRING POPULATION CHARACTERISTICS 87

o fr, s 2} # computes correlation co0it calculates  the correlation
#ar [1] -0.7633185 coefficient between two variables.
It requires the code identifying

. , . . the two variables (separated by a
The correlation between high_education and legve is -0.76, a comma and in no particular order)

strong negative correlation. It is negative hecause the slope of Example:
the line of best fit is negative. Hs absolute value is closer to 1 et
than to 0 because the observations are scattered tightly around
the line of best fit. (See the scatter plot of high_educotion and
leave on the left side of the figure in the margin.)

A few final remarks about the correlation coefficient. First, the
corretation between Y and X is the same as the correlation
between X and Y. Mathematically: cor(Y,X)=cor(X,Y). For
example, by running the following code we see that the correlation,
between leave and high_education is the same as the correlation
hetween high_education and leave (computed above):

dis1$leave

dis1$high_education

dis13high, education dig1leave

iy # computes correlation

SvE g

44t [1] -0.7633185

By switching the order of the variables, we are flipping the axes
of the scatter plot—the variable that was on the x-axis is now
on the y-axis, and vice versa-—but the relationship between the
variables does not change. Both the direction and strength of
their linear association remain the same. Compare the scatter
plot of leave and high_education on the right side of the figure
in the margin to the scatter plot of high_educotion and leave on
the left side. The slope of both lines of best fit are negative, and
the points are equally clustered around both lines.

Second, a steeper line of best fit dees not necessarily mean a
higher correlation in absolute terms, or vice versa. What deter-
mines the absolute value of the correlation coefficient is how close
the observations are to the line of best fit. For example, in figure
3.6, the absolute value of the correlation is lower in the second
scatter plot than in the first (despite the steeper line} because
the abservations are farther away frem the line of best fit. ‘

. FIGURE 3.6. A steeper tine of best fit does
not necessarily mean a higher correlation
in absolute terms.
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Third, if two variables have a correlation coefficient of zero, it
does not necessarily mean that there (s no relationship between
them. It just means that there is no [linear relationship between
them. For example, the two variables depicted in the figure in the
margin have a strong parabolic relationship. Their correlation is
approximately zero, however, because there is no line that would
summarize the relationship well.

Finally, correlation does not necessarily imply causation. Just
because two variables have a strong linear association does not
mean that changes in one variable cause changes in the other.
As we will see in detail in chapter 5, correlation does not nec-
essarily imply causation when the treatment and control groups
are not comparable with respect to all the variables that affect
the outcome (not inéluding the treatment itsell).

CORRELATION DOES NOT NECESSARILY IMPLY CAU-
SATION: Just because two variables are highly correlated
with each other does not necessarily mean that changes in
one variable cause changes in the other.

Despite the strong negative correlation between high_education
and leave, without further evidence we cannat conclude that if UK
voters became more highly educated, they would also become less
likely to support Brexit. In other words, we do not know whether
voters’ level of education and support for Brexit are causally
related in any way. Perhaps the observed relationship is spu-
rious, that is, the product of some third variable that affects both
the education level of voters and their support for Brexit, such
as the local economy. (We wilt discuss spurious relationships in
more detail in chapter 5.)

3.6 SUMMARY

This chapter introduced us to survey research. We saw how ran-
dom sampling can help us obtain a representative sample from a
population, enabling us io infer population characteristics from a
subset of observations.

in addition, we learned some tools that we can use to visualize
and summarize the distribution of one variable or the relationship
between two. Most data analyses in the social sciences, whether
for the purpose of measurement, prediction, or explanation, involve
exploring one variable at a time and/or trying to understand the
relationship between two variables. In this chapter, we have seen
various methods we can use for these purposes in different con-
texts. Below is a quick review.



To explore one numeric vartable at a time, we can:

create a frequency table
create a table of proportions

create a histogram with frequencies or densities to visualize
the distribution of the variable

numerically summarize the center of the distribution by com-
puting the mean and/or the median

numerically summarize the spread of the distribution by com-
puting the standard deviation and/or the variance.

When exploring the relationship between two numeric variables,
we can:

create a two-way frequency table
create a two-way table of proportions
create a scatter plot to visualize their relationship

numerically summarize the direction and strength of their linear
association by computing the correlation coefficient.

These are major building blocks of data analysis, and we will use
them in many of the analyses in the remainder of the book.
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3.7 CHEATSHEETS

371 CONCEPTS AND NOTATION

sample

representative sample

random sampling

sampling frame

unit nonrespoense

item nonresponse

misreporting

frequency table
of a variable

subset of observations from a target
population

sample that accurately reflects the
characteristics of the population from
which it is drawn; characteristics appear
in the sample at similar rates as in the
population as a whole

procedure that consists of randomly
selecting a sample of individuals from the
target population

complete list of individuals in a population

phenomenocn that occurs when someone
who has been selected to be part of a
survey sample refuses to participate

phenomencn that occurs when a survey
respondent refuses to answer a certain
question

phenomencn that occurs when respendents
provide inaccurate or false information

table that shows the values the variable
takes and the number of times each value
appears in the variable

the subset of students in a particular class
constitutes a sample from the population
of students who attend the school

if we randomly select students from those
who attend a particular school, we wiil
end up with a representative sample of the
population of students from that school;
the characteristics of the sample should
resemble those of the population; they
should have the same proportion of
olitical science majors, females,
areign-born students, and so on

to draw observations from a population
randomly, we could number the
individuals in the population from 1 to N
{where N stands for the number of
observations in the population), write the
numbers on slips of paper, put the stips in
a hat, shake the hat, and choose n slips of
paper from the hat {where n stands for the
number of observations in the sample)

the directory of students attendlnrr:] 2
particutar school is the sampling frame of
the pepulation of students in that school

when you refuse to participate in a survey
via phone or in person, your lack of
participation is referred to as a unit
nonresponse

survey respandents might feel
uncomlortable answering questions about
income and leave those questions btank

respondents might claim to have voted in
the tast election, even if they did neot, to
conform with social norms

if X={1,0, 0, 1, 0}, the frequency tabie of
X is:

values 0 1

3 2

frequencies

the table shows that X contains three
chservations that take the value of 0 and
two ohservations that take the value of 1

continues on next page. ..
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tabte of proportions
of a variable

two-way frequency
table of two variables

tablie that shows the proportion of
observations that take each value in a
vartable; by definition, the proportions in
the table slu—muld add up to 1 {or 100%)

atso known as a cross-tabulation, shows
the number of observations that take each
combination of values of two specified
variables
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if X={1,0,0,1, 0}, then the table of
proportions of X is:

values 0 1

proportions 06 04

the table shows that 50% Ofthe
observations in X take the value of 0 and
40% take the value of 1

if X and Y are as defined in the
dataframe below:

[ RSN SUE SO B
O—~,rO0OOo—= X
| @@ ~<

then the two-way frequency table of X
and Y is:

| values of ¥

! 0 1
values 0 1 2
of X 1 1 1

the two-way frequency table shows that in

the dataframe:

- there is one observation for which both
X and Y equal O (the fifth observation)

- there are two observations for which X
equals 0 and Y equals 1 (the second
and third observations)

- there is one cbservation for which X
equals 1 and Y eguals O (the fourth
abservation)

- there is one observation for which both
X and Y equal 1 (the first observation)

continues on next page. .
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374 COMCEPTS AND NOTATION {CONTINUED)

two-way table of
proportions of two
vartables

histogram
of a variable

shows the proportion of observations that
take each combination of values of two
specified variables; by definition, the
proportions in the tahle should add up to
1 (or 100%)

visual representation of a variable’s
distribution through bins of different
heights; the position of the bins along the
x-axis indicates the interval of values; the
height of the hins indicates the frequency
(or count) of the interval of values within
the variable

if X and Y are as defined in the
dataframe below:

=

O .8 Lo P =
=D o =
[ Y e

then the two-way table of proportions of
X and Y is:

values of ¥

0 1
values 0 02 04
of X 1 02 02

" the two-way table of proportions shows

that in the dataframe:

- both X and Y equal 0 in 20% of the
observations

- X equals 0 and Y equals 1 in 40% of
the observations

- Xequals T and Y equals 0 in 20% of
the observations

- both X and Y equal 1 in 20% of the
observations

if X={11,11, 12,13, 22, 26, 33, 43, 43,
48}, the histogram of X is:

fraguancy

the histogram shows that the variable X
contains:

- four observations in the interval from 10
to 20

- two cebservations in the interval from 20
to 30

- one observation in the interval from 30
to 40

- three observations in the interval from
40 to 50

contlaues on next page. .
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density histogram
of a variabie

descriptive statistics
of a variable

median
of a variable;
median(X)

standard deviation
of a variable;
sd{X)

histogram that uses densities instead of
frequencies as the height of the bins,
where densities are defined as the
praportion of the observations in the bin
divided by the width of the bin; because
the width of the bins is constant, the
refative height of the bins in a density
histogram implies the relative proportion
of the observations in the bins; the sum of
the areas of all the bins inr a density
histogram always equals 1

numerically summarize the main
characteristics of a variable’s distribution:
(1) measures of centrality such as mean
and median, and (i) measures of spread
such as standard deviation and variance

characterizes the central tendency of the
variable; value in the middle of the
distribution that divides the data into two
equal-size groups; it equals the middle
value of the distribution when the variable
contains an odd number of observations; it
equals the average of the two middle
values when the variable contains an even
number of observations

characterizes the spread of the variable's
distribution; it measures the average
distance of the observations to the mean;
the larger the standard deviation, the
flatter the distribution

T Xi-X)?
1]

sd(X) =
it is the square reot of the variable's

variance
sd(X) = +/var(X)

if X={11, 11, 12, 13, 22, 26, 33, 43, 43,
48}, the density histogram of X is:

dengity

0.00 001 0.02 0.03 Q.04

10 20 30 40 50

the densi)t}.; histogram shows that in the
svariable X, there are:

- twice as many values in the interval
from 10 to 20 as in the interval from 20
to 30

- twice as many values in the infervai
from 20 to 30 as (n the interval from 30
to 40

- three times as many values in the
interval from 40 to 50 as in the interval
from 30 to 40

see mean (in chapter 2), median, standard
deviation, and variance

it X={10, 4, 6, 8, 22}, the median of X is
B because the middle value of the
distribution of X is 8: {4, 6, §, 10, 22}
(recall that the values in the distribution
are always sorted in ascending order)

if X={10, 4, 6, 8, 22, 5}, the median of X
is 7 because the average of the two
middie values of the distribution {6 and 8)
is7: {4.5 6 8 10,22}

the standard deviation of the dashed
distribution is smaller than that of the
solid one:

if var(X) =4, then sd(X) =+4=2

continues en next page. .
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2.7.1 CONCEPTS AND NOTATION (CONTINUED)

variance characterizes the spread of the variable’s i sd(X) =2, then var(X) =2’ =4
of a variable; distribution; it is the square of the
var(X) variable’s standard deviation

var(X) = sd(X)*

scatter plot graphical representation of the if X and Y are as defined in the
of X and Y relationship between two variables, X and dataframe below:
Y'; the X variable is plotted along the

horizontal axis, and the Y variable is P X Y
plotted aleng the vertical axis -
1 4 2
2 B 5
3 10 3

then the scatter plot of X and Y is:

) :
o
L
5 a (05 g‘
j
s R e (10,3 '
2 = {4.2]
Q
Q 4 8 10 X
z-score of an number of standard deviations the if X={2, 4, 6}, then X=4, sd(X)=183,
observation of X; observation is above or below the mean of  and the z-score of each sbservation of X
Z',X the variable; to transform the observations is:
of a variable into z-scores, we subtract the . . X XX 4
mean, and then divide the result by the - ori=1 Z87 = U5y = g3 =-1.23
standard deviation: c e oX | Xpw® 44
- - fDl’fIZ. Zz msa%x):mzo
Xi— X . e X XX 6—4 _
X ! “fOrf—3.23—;§f-)<—}—W7123

i)

continues on next page.
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correlation or
correlation coefficient
hetween two
variabies;

cor(X,Y)

statistic that summarizes the direction and
strength of the linear association between
two variables

it ranges fram -1 to 1

the sign reflects the direction of the linear
assaciation: it is positive whenever the
slope of the line of best fit is positive, and
negative whenever the slope of the line of
best fit is negative

its absolute value reflects the strength of
the linear association, ranging from 0 (no
linear association) to 1 (perfect linear
association); the absolute value of the
correlation coefficient increases as the
observations move closer to the tine of
best fit and the linear association
becomes stronger

a strong correlation between X and Y
does not imply that either X causes ¥ or
that Y causes X; correlation does not
necessarily imply causation; more on this
in chapter 5

to compute the correlation between two
variables, X and Y, we first convert the
observations of both variables to z-scores;
then, the correlation coefficient is
calculated as the average of the products
of the z-scores of X and Y:

n X Y
" 7X%Z,
cor(X,Y) = &ﬂLZF;X_'_

INFERRING POPULATION CHARACTERISTICS
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cor{X,Y)=-1
perfect negative
correlation
cor(X,Y)=-0.8
cor(X,Y)=-05
cor(X,Y)=0
no linear
relationship
cor(X,Y)=05
cor(X,Y) =08
cor(X,Y)=1
perfect positive
correlation
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e i

operator that raises a number to a power; the number that
follows this symbol is the power, that is, the number of fimes
we want to multiply the preceding number by itself

; # raises 3 to the 2nd power
(3=9)

creates the frequency
table of one variable or
the two-way frequency
table of two variables

code identifying the
variable(s) (separated by a
comma, if two)

optional argument cu¢ s if
set to equal ~i:1i, the table
includes NAs

converts a frequenc
table into a table o
proportiens and a
two-way frequency table
into a two-way table of
proportions

either (a) the name of the
object containing the output
of the function tahis!; or ﬁh)
the function : i directly;
in both cases the code
identifying the variabte(s)
should be specified inside the
parentheses of tabiv(}

Vi

optional argument &
two-way table of proportions:
if set to equal 7, the first
specified variable defines the
groups of reference; if set to
equal 7, the second specified
variable defines the groups of
reference; if unspecified, the
whole sample is the reference

group

name of object where the
dataframe is stored

deletes all observations
with missing data from a
dataframe

creates the histogram of
a variable; by default, &
creates the histogram

where the heights of the
bins indicate frequencies

code identifying the variable

optional argument iz if set
to equal -, the function

creates the density histogram

calculates the mean of a
variable; by default, it
does not exclude missing
values

code identifying the variable

optional argument s if

set to equal &k, R ignores
the NAs when computing the
average of the variable

# frequency table .

# two-way frequency table

# includes NAs

# table of prsﬁ)orﬁons

# two-way table of proportions;
the whole sample is the
reference group

# two-way fable of propertions;
variablel defines the reference

groups

# frequency his’iégra m

i

# density histogram

Pt

# without removing NAs

# removing NAs




catculates the median of &
variable

calculates the standard
deviation of a variable

calculates the variance of
a variable

creates the scatter plot of
two variables

adds a straight line to the
most recently created
graph; by default, it draws
a solid line

calculates the correlation
coefficient between two
variables
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code identifying the variable
code identifying the variabte
code identifying the variable

two, separated by a comma
and in this order:

(1) variable on the x-axis

{2) variable on the y-axis

alternatively, we can specify
the arguments x and 4 to
indicate which variables we
want to plot on the x and y
axes, respectively

to add a vertical line, we set
the argument » to equal the
value on the x-axis where we
want the line; to add a
horizontal line, we set the
argument i to equal the value
on the y-axis where we want
the line

optional argument i:.: if set

to equal dasi=d’, R draws a

dashed line instead of a solid
one

code identifying the two
variabies, separated by a
comma and in no particular
order

#3 all of these pieces of code
produce the same scatter plot:

S

3 dréws solid verticaf line at 2

# draws S.D!_i.d horizontal line at 3

#t draws dashed vertical line at 3




