R symbols, operators, and functions intro-
duced in this chapter: L} and i

Based on |. Vernon Henderson, Adam
Storeygard, and David N. Weil, “Measur-
tng Economic Growth from Outer Space,”
American Economic Review 102, no. 2

(2012): 994-1028.

We have already seen how we can analyze data 1o estimate causal
effects and to infer populatlon characteristics. Another goal of
data analysis in the social sciences is to make predictions. In this
chapter, we learn how to summarize with a line the relationship
between the outcome variable of interest and another variable
called a predictor (a process known as fitting a linear regression
model). We then use this summary line to estimate the most likely
value of the outcome, given a specific value of the predictor. As an
illustration, we analyze data from 170 countries to predict GDP
growth based on changes in night-time light emissions.

4.1 GDP AND NIGHT-TIME LIGHT EMISSIONS

To assess a country's economic activity, we often want to measure
its gross domestic product (GDP). The GDP of a country is the
monetary value of goods produced and services provided in that
country during a specific period of time. The data required to
construct GDP measures, however, may be either unreliable or
hard to collect consistently, especially in develaping countries.
Consequently, we need good ways of predicting GDP using other
observed variables,

in recent years, a group of social scientists noticed that changes in
night-time light emissions, as measured from satellites circling the
earth, were highly correlated with economic activity. As economic
activity increases, so does use of electricity at night. As a result,
change in a country’s night-time light emissions as measured from
space might be a good predictor of that country’s GDP growth. In
this chapter, we explore this connection and predict GDP growth
using night-time light emission changes over time. We hegin,
though, with a simpler example. To practice fitting linear models
and interpreting the results, we start by predicting a country's
GDP at one point in time using a prior value of GDP.




4.2 PREDICTORS, OBSERVED VS, PREDICTED
OQUTCOMES, AND PREDICTION ERRORS

In the social sciences, we are often unable to observe the value
of a particular variabie of interest, Y, either because it hasn't
occurred yet or because it is difficult to measure. In these sit-
uations, we typicatly observe the values of other variables that,
if correlated with Y, can be used o predict Y. On the basis of
these other variahles, we can make an educated guess about what
the vatue of Y is currently or will likely be at a different point in
time, on average.

When analyzing data for the purpese of making predictions, we
refer to the variable or variables that we use to make predictions

as the predicior{s} and to the variable of interest that we want to |

predict as the sutceme variable,

For example, if we are interested in predicting GDP using prior
GDP, then GDP is the outcome variable, and prior GDP is the
predictor. I we are interested in predicting GDP growth using
the change in night-time light emissiens, then GDP growth is the
outcome variable, and the change in night-time light emissions is
the predictor.

In mathematical notation, we represent the predictor as X and
the outcome variable as Y. Although we use the same mathemat-
ical notation as when estimating causal effects, the relationship
hetween the X and Y varlables here is not necessarily causal.

As we will see in detail later, to make good predictions, we choose
predictors that are highly correlated with the outcome variable of
interest. In other words, we choose predictors that have a strong
linear association with the ouicome variable. (Note that, when
we speak of a "high degree of correlation,” we mean that the
correlation coefficient is high in absolute terms, regardless of its
sign.} As discussed in chapter 3, correlation dees not necessarily
tmply causation. Just because two variables are highly correlated
with each other does not necessarily mean that changes in one
variable cause changes in the other. When analyzing data for
predictive purposes, then, we do not assume that there is a causal
relationship hetween X and Y, we simply rely on a high degree
of correlation between them and use one variable to estimate the
value of the other.

Making predictions is a two-step process. Once we have identi-
fled our X and Y variables, we need to understand how these two
variables relate to each other. Our first step, then, is to analyze a
dataset that contains both variables and summarize the relation-
ship between X and Y with a mathematical model. We call this
process “model fitting” because it consists of fitting to the data a
model that characterizes how X is related to Y, on average.
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When making prediciions,

between two typss of w

the predictor{s) (X3 var

VAL as ine i):ﬂl,"ﬂts e o giif?{;‘F?,L{'!El*-

the outcome variable (Y7 variab

TIP: Predictors are aiso known as inde-
pendent variables, and outcome variables
as dependent variables.

RECALL: The carrelation coefficient
ranges from -1 to 1 and summarizes
the direction and strength of the linear
association between two variables. The
closer the corretation coefficient is in
absolute value to 1, the stronger the linear
association between the two variables
{that is, the closer the observations are to
the line of best fit).
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The predicied outtomes, Yo
ves of Y [
madel that summarizes ihe re
X oand Vo a dataset
Hoand ¥

tion and (1) the observed vatues of X

redict based an |

shservi-

1. FIT A MODEL
- we observe both X and Y

- we summarize the relationship between the
average Y and X with a model

The prediction errar, =

residual, measures ho

Later, once we are in a situation where we cannot observe Y
but we ohserve X, we use the fitted model to predict specific
average values of the outcome variable for each observed value of
the predictor. We refer to our predictions of Y as the sredicted
sutcomes, and we denote them as Y {pronounced Y-hat).

2. MAKE PREDICTIONS

- we observe X but not Y

- we compute 1% by plugging the observed
value of X into the fitted model

When making predictions, we aim to be as accurate as possible.
In other words, we alm to minimize the prediction errors (also
known as residuals). These are defined as the difference between
the observed outcomes and the predicted outcomes and are
denoted by € (the Greek letter epsilon with a “hat” an top).

Note that to differentiate between observed and predicted vari-
ables, we often refer to ¥ as the observed outcome—and not just
the outcome—to distinguish it more clearly from the predicted

o~

outcome Y.

4.3 SUMMARIZING THE RELATIONSHIP
SETWEEN TWO VARIABLES WITH A LINE

When fitting a medel for predictive purposes, we could use many
different mathematical functions. [n this book, we always sum-
marize the relationship between X and Y with a line and, in
particular, the line of best fit.

let’s get a sense of how this works using a hypothetical example.
Suppose that the scatter plot of the X and Y variables (in the
dataset where we can observe both) is as shown in the margin.
As in all scatter plots, every dot represents a particular obser-
vation of X and Y. In this case, each dot is located based on
the value of the predictor and the value of the observed outcome
for a given observation. In the figure in the margin, we highlight,
as an example, the dot representing the first observation of this
imaginary dataset: (Xi, ¥7).

By looking at the scatter plot of X and Y, we get a general sense
of how Y relates to X. In this case, given the observed upward
slope of the data cloud, we conclude that high values of ¥ are
likely to be associated with high values of X, and low values of
Y are likely to he associated with low values of X. While this
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is helpful information for predicting Y using X, it would be even
better if we could summarize the relationship with a mathematical
formula so that for each value of X, we could compute a predicted
value of Y.

Far example, we can summarize the relationship between X and
Y with a line. In the top figure in the margin, in addition to
the scatier plot of X and Y, we have plotted such a line, which
we call the fitted line. Now, for every value of X, we can find a
predicted Y (?) by finding the value of X we are interested in
on the x-axis, golng up to the fitted line, and finding the height
of the corresponding point on the line. For example, if we were
interested in the value of X in the first observation in the dataset
{X1}. based on the fitted line drawn on the plot, we would predict
a Y equal to ?; :

>

the prediction errors this fitted model would produce. If we use
the line to compute the predicted outcomes for every observation,
then we can measure the prediction errors (€} as the difference
hetween the observed outcomes (Y} and the predicted outcomes
). (E}xY,-—\/;;.) Note that for each observation, this difference is
equivalent to the vertical distance between the dot and the fitted A
line. See, for example, the bottom figure in the margin, where we
show the prediction error of the first observation. In general, the
closer the dots are to the fitted line, the smaller the prediction
errors, and the farther the dots are from the line, the larger the
prediction errors. To make the best possible predictions, then,

By looking at the scatter plot with the line, we get a sense of /

X
we always summarize the relationship between X and Y with the i

line of best fit, which is the line closest to the data. {ln subsection

4.3.4, we will explain the precise method used to choose this line.}

421 THE LINEAR REGRESSION MODBEL

Now let's introduce some mathematical notation. The linear TIP: In statistics, we use Greek letters to
model, also known as the linear regression model, is defined as: represent quantities we da not know, such

as o, A, and ¢. The two coefficients, o
and 4, are not subscripted by 7 because
they do not vary by observation. They are
constants and not variables.

Yi=a+8X+¢

where:

Y; is the outcome for observation /

- « (the Greek letter alpha) is the intercept coefficient
- f (the Greek letter beta) is the slope coefficient
- X; is the value of the predictor for observation §

- ¢ (pronounced epsilon sub i} is the error for observation /.

This is the theoretical model that we assume reflects the true
relationship between X and Y. H we knew the values of the
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TIP: You might have seen the equation of
a line written as Y = mX + b where m is
the slope and b the intercept. If so, it may
be helpiut for you to think that @ is the b
and E is the m of the familiar model.

coefficients (o and f), as well as the values of the errors for
each observation {¢;}, we could use this formula to compute the
outcomes for each observation (Y;) based on the observed values
of the predictors (X;). (By plugging the values of &, 8, X;, and ¢;
into the formula above, we would compute Y;.)

Unfortunately, we do not know the values of o, 3, and €. We
have to estimate them based on data. We start by estimating the
intercept () and the slope {8), the two coefficients that define
the line. This is equivalent to fitting a line to the data, that is,
finding the line that best summarizes the relationship between X
and Y.

The formula of the line we fit to the data is:

-~ o~

where:

- Y: (pronounced Y-hat sub i} is the predicted outcome for ohser-
vation /

& (pronounced alpha-hat) is the estimated intercept coefficient

,@ (pronounced beta-hat) is the estimated slope coefficient

- X; 15 the value of the predictor for shservation /.

Note that in this formula, Y, o, and 8 have a “hat” on top. This
indicates that they are estimates or approximations. In addition,
this formula no longer includes the errors (¢;), which means that
the resulting outcomes do not necessarily equal the true values of
Y (Y;); they equal the predicted values of ¥ {\7,) in other words,
for every value of X, this formula provides the corresponding value
ot Y on the fitted line (instead of on the observed data point}.
Note that the value of ¥ produced by a fitted model is an average
predicted value; it is the average predicted value of ¥ associated
with a particular value of X. Indeed, predicted outcomes (?) are

equivalent to average outcomes (Y).

The difference between the observed values of ¥ and the pre-
dicted values of Y are the estimated errors or residuals:

G=Yi—Y

where:

- € is the estimated error, or residual, for observation i
- Y; is the observed outcome for gbservation /

-~

- Y; is the predicted outcome for observation 1.

These are the prediction errors that we try to minimize by using
the line that best fits the data.




To recap, to make predictions using the linear regression model,
we start by analyzing a dataset that contains both X and Y
tor each observation. We summarize the relationship between
them with the line of best fit, which is the line with the smallest
prediction errors possible. Fitting this line involves estimating
the two coeflicients that define any line: the intercept (&) and
the slope (E). Once we have fitted the line, we can use it to
obtain the most likely average value of ¥ based on the observed
value of X,
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1. FiT A LINEAR REGRESSION MODEL 2. MAKE PREDICTIONS
- we observe both X and ¥ - we observe X but not ¥V
- we find the line that best summarizes the - we compute % by ptugging the observed
relationship between them; we estimate the value of X into the fitted linear regression
intercept (@) and slope {8) of the line with model:
the smallest prediction errors possible Y =8+ BX
Let's take a moment now to understand what the two coefficients
of a line measure and how to interpret them.
437 THE INTERCEPT COEFFICIENT
Cenerally speaking, the intercept of a line specifies the vertical I IS
location of the line. See, for example, the lines in the margin, € __',__---""'-’_____——
which have different intercepts but the same slope. Increasing i "_______-——""" P
and decreasing the intercept moves the line up and down. e
-
Specifically, the intercept (@) is the value of Y when X=0.
indeed, as we can see below, if in the fitted linear model, we plug The intercept (6] s the ¥ when X0

in X=0, then ¥ equals @. So, & is the ¥ when X=0.

~

Y=a+pBx0=0a (i X=0)

This definition of the intercept is helpful. We can use it to figure
out the value of & of any line on a graph. We just need to find
X=0 on the x-axis, go up to the fitted line, and then find the
height of the corresponding point. The value of Y at the point on
the fitted line where X=0 is the value of the intercept of the line.
{(See figure in the margin.) Note that the y-axis is not always
drawn at X=0, and therefore, the intercept is not necessarily the
value of ¥ at the point where the line crosses the y-axis.
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We can also use the definition above to help us substantively
interpret the value of &. In predictive models, we interpret the

intercept as the predicted outcome, ¥, when the predictor X
equals zero. (We will see concrete examples soon.)

4.3.3 THE SLOPE COEFFICIENT

ST Generaltly speaking, the slope of a line specifies the angle, or
PP §~ steepness of the line. See, for example, the lines in the margin,
TEEIIzsecemeseeecsesoes ks which have different slopes but the same intercept. The top line
__'"“--—-_‘____ % has a postitive slope, the middle line has a slope of zero, and the

bottom line has a negative slope.
The stope is AY divided by AX Specifically, the slepe (E) is the change in Y divided by the

betwsen two points on the lins

change in X between two points on the line, commonly known as
“rise over run”

TIP: The change in a variable between ) ~ ~ ~
two points (initial and final) is equivalent E _Inse AY _ Yiinal = Yinittal
to the difference between the value of the run AX Kiinal — Xinitial

variable at the final point and the value of

the variable at the initial point. Examples:
where A (the Greek letter Delta) represents change, and thus,

LY = Yiinal = Yiniiat AY is the change in Y and AX is the change in X.
HX = Xﬁnai - X’initlal o~ —~

For example, see figure 4.1, which shows the change in Y (AY)
and the change in X (A X) associated with two points on the line.

FIGURE 4.1. The slope (E) can be com-
puted as “rise over run,” where rise is the
change in Y and run is the change in X
between two points on the line.
N :
g F
’\Finitial cm /({lrﬁtials?iniﬁaj) .
S AX

Xiitia Xiinal




Substantively speaking, we can interpret the value of the slope
as the change in Y associated with a one-unit increase in X. In
mathematical notation, when AX=1, A=AY"

=AY (it AX=1)

In predictive models, then, we interpret the slope as the predicted
change in the outcome, /_\.?, associated with a one-unit increase
in the predictor X. Since B measures a change in Y, we interpret
it as an increase when positive, a decrease when negative, and
as no change when zero.

-~

Y=a+p5X
where:

- @ is the estimated intercept coefficient, which can be
interpreted as the ¥ when X=0

- [37 is the estimated slope coefficient, which can be inter-
preted as the AY associated with AX=1.

Before moving on to tearning how to find the line of best fit, let’s
practice figuring out the specific formula of a line by looking at
its depiction in a graph. (See figure in the margin.)

We start by finding the values of two points on the line:

- the peint that corresponds to X=0
- the point that corresponds to a higher value of X than 0.

in the figure in the margin, these two points are {0,5) and (2,25).
Given the values of these two points, we can conclude that:

- the intercept coefficient (@) equals 5 because that is the value
of ¥ when X=0 (see the point (0,9) on the line)

- the slope coefficient (E) equals 10 because that is the vatue of
AY /X between the two points on the line:
AY 25-5 20

S

B=

This particular fitted line is then: ¥ =5+ 10X

PREDICTING QUTCOMES 105

The slope (F] represents the &Y assocl-
ated with & one-unll ingreass in X,
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FIGURE 4.2. Three lines that we could
draw on the scatier plot of X and Y out
of the infinite number of possible lines.

FIGURE 4.3. The fit of the tine improves
from left ta right. The last line best sum-
marizes the relationship between X and
Y'; it is closest to the observations, which
means that it produces the smallest pre-
diction errors (shown as red dashed lines).

We can check that the two points shown in the figure on the
previous page—(0,5} and (2,25)—helong to the line Y =5+10X.
For each point, we plug the value of X into the formula of the line
and find the corresponding y:

54 10x0 =5 (if X=0)

? —
Y =54+10x2 =25 (if X=2)

The math above confirms that these twe points are indeed on the
line Y =5-+10X.

4.3.4 THE LEAST SQUARES METHOD

We could draw an infinite number of lines on a scatter plot, but
some lines do a better job than others at summarizing the rela-
tionship between X and Y. For example, of the three lines shown
in figure 4.2, we can agree that the last one does the best job of
depicting how Y relates to X, (Intuitively, we know that the tine
of best fit shouid be as close to the dots as pessible.)

How do we choose the line that best summarizes the relationship
between X and Y7 Given that we want our predictions to be
as accurate as possible, generally speaking, we choose the line
that reduces the prediction errors (€}, that is, the vertical distance
between each dot and the fitted line. As we can observe in figure
4.3, the line on the right produces the smatlest prediction errors
(shown as red dashed lines). Therefore, we would choose this

line over the other two to summarize the relationship between X
and Y.




Formally, to choose the line of best fit, we use the “least squares”
method, which identifies the line that minimizes the “sum of the
squared residuats,” known as SSR. (Recall that residuals is a
different name for prediction errors; this method minimizes the
sum of the squared predictien errors.)

SSR = Z’g?
j=1

Why do we want to minimize the sum of the squared residuals
rather than the sum of the residuals? Because in the minimization
process we want to avoid having positive prediction errors cancel
out negative prediction errors. By squaring the residuals, we

convert them all {o positive numbers. {This procedure for choosing .

the line of best fit is called the “least squares” method because
it minimizes the sum of the squared residuals.)

In practice, we do not undertake this minimization process our-
selves, Instead, we rely on R to make the necessary computations.
in the next section, we will go over a simple example and learn
how to ask R to estimate the two coefficients of the line that min-
imizes the sum of the squared residuals. In other words, we will
learn how to use R and the least squares method to find the line
of best fit.

4.4 PREDICTING GDF USING PRIODR GDP

The code for this chapter's analysis can be found in the "Pre-
diction.R” file. The dataset we analyze is provided in the file
“countries.csv”, and table 4.1 shows the names and descriptions
of the variables included.

variable description
country name of the country
gdp country's GDP from 2005 to 2006 (in trillions of

local currency units)

prior_gdp  country’s GDP from 1992 to 1993 (in trillions of
local currency units)

light country's average level of night-time light emis-
sions from 2005 to 2006 (in units on a scale from
0 to 63, where 0 is complete darkness and 63 is
extremely bright light)

prior_light country's average level of night-time light emis-
sions from 1992 10 1993 (in units on a scale from
(0 to 63, where 0 is complete darkness and 63 is
extremely bright light)
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TABLE 4.1. Description of the variables
in the countries dataset, where the unit of
observation is countries.
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RECALL: If the DSS folder is saved
directly on your Desktop, to set
the working directory, you must run
sedaed] e sl G570 you have a
Mac and - RN T S
if you have a Windows computer (where
user is your own username). H the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on how
to set the working directory.

As always, we begin by reading and storing the data {assuming
we have already set the working directory):

w csv” b #E reads and stores data

To get a sense of the dataset, we look at the first few observations:

i 2y # shows first observations
#H# countiy gdp prior_gdp light

prior_light
A USA 11107 7373 4227 4.482
## 2 Japen 543.017 464.168 11.926 11.808
#3 3 Germany 2.152 1793 10.573 9.699
## 4 China 16558 4.801 1.451 0.735
## 5 UK 1.098 0.754 11.856 13.392
## 6 France 1.582 1.208 8513 £.909

Based on table 4.1 and the ouiput above, we learn that each
observation in the dataset represenis a country, and that the
dataset contains five variables:

- country is a character variable that identifies the country.

- gdp and prior_gdp are each country’s GDP at two different
points in time, 13 years apart, from 2005 to 2006 and from
1992 to 1993. They are measured in trillions of local currency
units (that is, in trillions of dollars in the case of the United
States, trillions of yen in the case of Japan, trillions of euros
in the case of Germany, and so on).

- light and prior_light are each country’s average night-time
light emissions at two different points in time, 13 years apart,
from 2005 to 2006 and from 1992 to 1993. They are measured
on a scale from O to 63, where 0 represents no light and 63 is
extremely bright light.

We interpret the first observation as representing the United
States, where GDP was $11 trillion fraom 2005 to 2006 and $7
trittion from 1992 to 1993, and average night-time light emissions
were 4.2 units frem 2005 1o 2006 and 4.5 units from 1992 to 1993
{(as measured on a scale from O to 63).

To find the total number of observations in the dataset, we rumn:

dimizo; # provides dimensions of dataframe: rows, columns
#HFH[1]170 5

The dataset contains information about 170 countries.




4440 RELATIONSHIP BETWEEN GDP AND PRIOR GDP

To get a sense of the relationship between a country’s GDP at
twa points in time, we anatyze how the two measures of GDP
that we have in the dataset, gdp and prior_gdp, relate to each
other. Since these two variables were measured 13 years apart,
our conclusions refer to the relationship between a country’s GDP
at one point in time and its GDP about 13 years prior.

We start the analysis by creating a scatter plot using the function
sioill to visualize the relationship between the two vartables of
mterest Note that we always plot the predictor on the x-axis and
the outcome variable on the y-axis. In this case, to visualize the
relationship between gdp and prior_gdp, we run:

1 ¥ creates scatier plot

co$gdp
1000 1500 2000

500
L

0 200 400 600 800 1000 1200
codprior_gdp

Looking at the scatter plot, we observe a positive association
between the two variables. ‘Higher values of prior GDP tend to
be associated with higher values of GDP. In addition, we notice
that the relationship between the two variables appears to be
strongly linear. To further investigate the direction and strength of
the linear association, we can compute the correlation coefficient
using the function corin
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RECALL;  pioi;  creates the scatter
plot of two variables. Examples:

if R gwes you ’{he error message Error in
plot.new{): figure margins too large”, try
making the lower-right window larger and
then re-run the code that creates the plot.

RECALL: The correlation coefficient
ranges from -1 to 1 and summarizes
the direction and strength of the linear
association between two variables. In
R, the function :::{} calculates the
correlation  coefficient  between  two
variables. Example: Lot
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TIP: When writing the medel for the first
time, it is helpful to (i} emphasize that
the variables may take different values for
each observation by adding the subscript
i, and (it} specify what each observation, /7,
represents. In this case, the unit of chser-
vation, J, is countries.

; fits a linear model. [t requires
a formula of the type ¥ - X,
where Y identifies the Y variable
and X ideniifies the X variable.
To specify the object where the
dataframe is stored, we can either
use the % character in the code
identifying each variable or set the
optional argument Examples:
H e b 0r

Y # computes correlation

4 [1] 0.99034%1
The correlation coefficient between the two variables turns out to
be 0.99, which confirms what we noticed in the scatter plot above.

Now that we have a general sense of how the two variables
relate to each other, we can fit a linear model to summarize their
relationship. This is the model we will use later to make predic-
tions. Since our outcome of interest is gdp and our predictor is
prior_gdp, the line we want to fit is:

g’aT;;,. —a+8 prior_gdp,  {i=cocuntries)
where:

- gdp, is the average predicted GDP from 2005 to 2006 among
countries in which the value of prior_gdp equals prior_gdp;

- prior_gdp; is the GDP of country i from 1992 to 1993,

Once we estimate & and 3 we will be able to plug into the formula
above any value of prior_gdp and get a gdp in return.

To estimate the coefficients of the linear model using the least
squares method in R, we use the function s}, which stands for
“linear model.” This function requires that we specify as the main
argument a formula of the type v -~ X, where Y identifies the
outcome variable and X identifies the predictor. To fit a line to
summarize the relatlonship between GDP and prior GDP, we run:

1+ fits linear model
A

F#3# Call
#4E Im(formula = co%gdp ~ cobprior_gdp!
et

## Coefficients:
#3# {Intercept] co$pricr_gdp
HFE 07161 1.6131

Note that since the variables in the model should always come
from the same dataframe, there is an alternative way of specifying
the i/} function. Instead of using the % character for each vari-
able, we can use the optional argument daia and set it to equal
the name of the object where the dataframe contammg all the
variables is stored. For example, i =
produces the same output as the code above

oOGETE L)

As we can see in the output of the function above, the esti~

mated intercept (@) is 0.72, and the estimated slope (,@), the
coefficient for the variable prior_gdp, is 1.61.




The fitted linear model is then:

53—15 = 0.72 + 1.61 prior_gdp

How should we interpret @=0.727 The value of & equals the Y
when X=0. Here, since Y is GDP and X is prior GDP (both
measured in trillions of local currency units), we interpret the
estimated intercept coefficient as indicating that when prior GDP
is 0 trillion tocal currency units, we predict that GDP is 0.72
tritlion local currency units, on average. {(Note that the interpre-
tation of the intercept does not always make substantive sense,
especially when the range of observed values of the predictor does
not include zero. This is a good example. |t does not make sense
for a country to have a prior GDP of 0 trillion local currency units.

When we make predictions beyond the observed range of data,”

we make the strong assumption that the relationship between X
and Y continues to hold. This is called "extrapolation,” and it
may lead to nonsensical predictions.)

How should we interpret E:‘i.m? The value of E equais the
AY associated with AX=1. Here, since the Y is GDP and
the X is prior GDP (both measured in trillions of local currency
units), we interpret the estimated slope coefficient as indicating
that an increase in prior GDP of 1 trillion local currency units is
associated with a predicted increase in GDP of 1.61 trillion local
currency units, on average.

To make it easier to work with the fitted model, we may want to
store it as an object using the assignment operator -, (Here, we
chose the name fit, hut we could have chosen another name.)

oot # ostores fitted model

For example, now we can easily add the fitted line to the scatter
plot by using the function 2 i, As we saw in the previous
chapter, this function adds a stratght line to the most recently
created graph. There, we saw how to draw horizontal and vertical
lines. Here, we learn that this function will draw the fitted line
when we specify as the main argument the object that contains
the output of the fitted model. Go ahead and run:

it 1 # adds line to scatter plot

Remember, that R will give you an error message if you run this
piece of code without having first created a graph. If you run all
the code provided in this section, in sequence, you should see the
figure shown in the margin,

Now that we have fitted a line to summarize the relationship
between our two variables of interest (also known as fitting a
linear regression model), we can use the fitted model to make
predictions.

PREDICTING OUTCOMES 111

TIP: In what units of measurement are the

two estimated coefficients, & and 37

~ K Y is nen-binary, both & and @ are in
the same unit of measurement as Y.

- 1f Y is binary, & is in percentages, and
B is in percentage points (after multi-
plying both outputs by 100}.

Herg, since gdp is non-binary and mea-
sured in trillions of local currency units,
both & and A are measured in trillions of
Llocat currency units.

binell adds the fitted tine to the
most recently created graph when
we specify as the main argument the
object that contains the nutput of
the‘ functu:m Example i
i s and then aidi

codgdp

coSprior_gdp
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TIP: In what units of measurement are our

predictions, Y and AY7?

- If ¥ is non-binary, both Y and AY are
in the same unit of measurement as Y.

- If Y is binary, Y isin percentages and
AY is in percentage points {after mul-
tiplying both outputs by 100}

Here, since gdp is non-binary and mea-

sured in trillions of locat currency units,

hoth ¥ and AY are measured in trillions

of local currency units.

prioy GUF = 400

TIP: We arrive at this formula by using the
definition of either (a) the slope coefficient
or {b) the change in the predicted outcome
between twe points {initial and final).

(a) Since A=AY¥/AX, then AV=F AX
1) AY = Vinal — Paritial
= (o + E Kinal) = (@ -+ E Kinitial)
= E(Xﬁnal"xlnmal) = E&x

Cenerally speaking, there are two types of predictions we may be
interested in making. First, we may want to predict the average
value of the outcome variable given a value of the predictor. When
this is the case, we use the formula of the fitted line directly.

TO COMPUTE Y BASED ON X: We plug.the value of X
into the fitted linear model and calculate Y.

Y =d+ BX

For example, suppose that we want to know the current GDP of
a country, and for same reason we cannot measure it. But we
do know that 13 years ago, the country’s GDP was 400 trillion
local currency units. What would our best guess be for current
GDP, given the relationship between GDP and prier GDP that
we estimated above? To predict the value of a country’s current
GDP based on the value of that country’s GDP 13 years prior,
we plug the value of prior GDP into the fitted linear model:

Egﬁ = 0.72 4 1.61 prior_gdp
=072+ 1.61x400 = 644.72

Based on the fitted line, we predict that the country has a current.
GDP of about 644.72 trittion local currency units. (See figure in
the margin to visualize how we would arrive at the same conclu-
sion using the fitted line drawn in the scatter plot.}

Second, we may want to predict the average change in the out-
come variable associated with a change in the value of the pre-
dicter. When this is the case, we use the formula that computes
the change in the predicted outcome, shown below.

TO COMPUTE AY ASSOCIATED WITH AX: We plug
the value of AX into the formula below and calculate AY.

AY =B AX

For example, imagine that we want to predict the change in GDP
associated with an increase in prior GDP of 400 trillion local
currency units. To make the calculations here, we start with the
formula of change in the predicted GDP and plug in the value of
change in prior GDP:




A;&E = 1.61 Aprior_gdp
= 1.61x400 = 644

We predict that an increase in GDP 13 years ago of 400 trillion
in local currency would likely be associated with an increase in
current GDP of about 644 trillion tocal currency units. (Again,
see figure in the margin to visualize how we would arrive at the
same conclusion using the fitted line drawn in the scatter plot.)

4.4 2 WITH MNATURAL LOGARITHM TRANSFORMATIONS

In the previous subsection, we saw how to fit a line using our
two variables of interest, gdp and prior_gdp, without any trans-
formations. To improve the fit of the line, there are times when we
might want to transform one or both of our variables of interest.
As we will soon see, these transformations affect how we interpret
the coeflicients.

When a variable contains a handful of either extremely large or
extremely small values, the distribution of the variable will be
skewed. (Recall that a distribution is considered skewed when it
is not symmetric because one of its tails is longer than the other.)
Under these circumstances, it is often a good idea to transform
the variable by taking its natural logarithm. This transformation
will make the variable of interest more normally distributed and,
in turn, improve the fit of the line to the data. In the example at
hand, we will transform both variables of interest by taking the
naturat logarithm, and then we will re-fit the line.

in R, the function to compute a natural logarithm is To
calculate the natural logarithm of each of the values msuie a
variable, we specify the code identifying the variable as the main
argument. Then, fo save the results as a new variable, we can
use the assignment operator «2-. To store this new variable inside
the existing dataframe, we use the % character. Returning to the
running example, to create the log-transformed GDP variables,
log_gdp and log_prior_gdp, we run:

FH# crea‘ge Log—‘t:ansformed GOP variables
5] # gdp

# prior gdp

To check that the new variables were created correctly, we could
look at the first few observations of the dataframe co. 1f you run
o} again, you should see that the value of the first observa-

tton of log_gdp is 2.4 (since gdpy=11.1 and log(11.1)=2.4), and
the value of the first observation of log_prior_gdp is appronmatelg
2 (since prior_gdp1=7.4 and log(7.4})=2).
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TIP: The natural logarithm is the inverse
of the exponential function. The base of
the natural logarithm is the constant e,
known as Euler's number, which is approx-
imately 2.7183. The natural togarithm of
X, log(X), is the power to which e would
have to be raised to equal X (if X=e¥
then log(X)=Y).

501 computes the natural loga-
rithm of the argument specified
inside the parentheses. Example:
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RECALL: #i<:{; creates the histogram of a To visualize how the transformation affected the distribution of
variable. Example: &% = our two variables of interest, we can create the histograms of the
original and log-transformed variabtes by running:

#3 create histograms
>3 # gdp
# log-transformed gdp
# prior gdp
# log-transformed prior gdp

200
frequency
50

frequency
40

100 150
20 30

50
10

_ o
0 500 1000 1500 2000 -0 .20 10 0 10 -
cofgdp co$log_gdp

fraquency

frequency
40

30

10

0 500 1000 1500 2000 80  -20 10 0 10
coprior_gdp colog_prior_gdp

As we can see in the histegrams on the left, the two original
measures of GDP contained a handful of extremely large vaiues,
which skewed their distributions. (In both cases, the tail on the
right is longer than the tail on the left). While most observations
had values below 200 trillion local currency units, there were a
few outliers. For example, Indonesia had a GDP of more than
1,100 triltion rupiahs in 1993 and of almost 1,800 trillion rupi-
ahs in 2006. As we can see in the histograms on the right, the
distributions become more symmetrical and bell-shaped once we
log-transform the variables.

Now, we can visualize how the transformation of the variahles
affected the fit of the line by creating the scatter plots between
the original variables and between the log-transformed variables:




#3 create scatter plots

#* onqma
! # log-transformed

cobgdp
cofiog_gdp
%,

co$prior_gdp co$iog_pricr_gdp «
Comparing the two scatter plots, we clearly see that the natural
logarithm transformation makes the relationship between the two
variables of interest more linear. To confirm this, we can compute
the correlation coefficient between the log-transformed variables:

y; # computes correlation
?T# { } 0 9982696

indeed, the new correlation coefficient is even closer to 1 than it
was before the logarithmic transformation (0.998 vs. 0.990).

Now that we have a sense of how the two log-transformed vari-
ables relate to each other, we can fit the following linear model
to summarize their relationship:

10@!3; =a+p fog_prior_gdp;  (i=countries)

where:

- lé_gtégp,- is the average predicted natural logarithm of GDP
from 2005 to 2006 among countries in which the value of
log_prior_gdp equals log_prior_gdp;

- log_prior_gdp; is the natural logarithm of the GDP of country
i from 1992 to 1993,

To estimate the coefficients of this new line of best fit, we use the
Lt function again and run:

ot # fits finear model

e

# Caﬂ
#3E im{farmula = log_ gdp -~ log prior_gdp, data—fo)
i

#4 Coefficients:
## {Intercept)
FHHE 0.4859

log_prior_gdp
1.0105
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RECALL: Lwi; fits a linear model. It
requires a formuia of the type * N
To specify the object where the dataframe
is stored, we can use the optional argu-
ment : or the % character. Exam-

, Lyt et OF
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The fitted log-tog linear model is & Hied

model |

:n {og-transiormen

o B e if)r_j 0.4

in ihis madei,

foted percentage change

assnUia fan o s in the prodic

tar of 1 percen

which both Y and X have

e wnterpret A as the pre-

he ouicoms

Using the estimated coefficients provided above, we can write the
new fitted linear model as follows:

i@p =049 +1.01 log_prior_gdp

This type of model, in which beth the outcome and the predictor
have been log-transformed, is called the iog-log linesr model
While we could interpret the coefficients the same way as in the
normal linear model, (n practice, we use an approximation to avoid
dealing with the logarithms, especially when interpreting E

As shown in the appendix near the end of this chapter, we interpret
B as the predicted percentage change in the outcome associated
with an increase in the predictor of T percent. Since here E:T.O’I,
an increase of prior GDP of 1% is associated with a predicted
increase in GDP of 1.01%, on average. Note that in this inter-
pretation of E both the change in X and the change in Y are
measured in percentages, instead of in units, as is the case in the
standard linear model. In other words, in the tog-log model, we
estimate change in relative rather than absolute terms.

4.5 PREDICTING GDF GROWTH USING
NIGHT-TIME LIGHT EMISSIONS

Let's figure out how to fit a model to predict changes in GDP
using changes in night-time light emissions. As mentioned ear-
lier, being able to predict GDP growth using night-time light
emissions would be quite useful. In remote areas of the world,
where measuring GDP is difficult, measures of night-time light
emissions are readily available through satellite imagery.

We start the analysis by creating the two variables whose rela-
tionship we want to understand. In this model, our outcome of
interest is the percentage change in GDP between two points in
time, which is defined as:




frequency
50

40

30

20

10

gdp_change =

As we saw in chapter 1, R understands arithmetic operators such
~, ", and ;. Thus, to create this variable, we can run:

## create GIP percentage change variable

Our predictor is the percentage change in night-time light emis-
sions over the same period of time, which is defined as:

gdp — prior_gdp < 100

light — prior_light

tight_change =

To create this variable, we run:
## create light percentage change variable

We could check that the new variables were created correctly
by looking at the first few observations of the dataframe co.

: again, you should see that the value of the first
observation of gdp_change is approximately 51, and the value
of the first observation of light_change is about -6. Since both
new variables measure change as a percentage, we tnterpret the
first number as indicating that the GDP of that country grew by
51% in the 13-year period under study; we interpret the second
number as indicating that the night-time light emissions in that
same country declined by 6% during the same time period.

To get a better sense of the contents of gdp_change and
light_chonge, we can create their histograms by running:

## create histograms
; : ## of percentage change in gdp

3 # of percentage change in light

0 260 400 600

cc$gdp change

frequency
20 30 40 50

10
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TiP: Do not confuse percentage change
with percentage-point change. The per-
centage change is defined as the change

relative to the baseline:
Yoo e Yo
final initial % 100
Y’miﬁal

In contrast, the percentage-point change
is defined as the difference between the
final and initial values when these values
are measured in percentages:

Yinsl — Yinsis (both measured in %)

For example, if the voter turnout rate
increased from 50% to 60%, the percent-
age change would be;

60% — 50%
T X 100 = 20%
(]

And, the percentage-point change:
60% — 50% = 10 p.p.
We could describe this change as an

increase of either (a) 20 percent or (b) 10
percentage points.




118 CHAPTER 4

Here we observe that both variables are more or less normally
distributed and that while almost all countries saw their GDP
grow by between 0 and 200% over the 13-year peried, a fair
number of countries saw their night-time light emissions either
grow by more than 200% or actually decline.

RECALL: We always plot the predictor on Now that we have constructed and learned how to interpret our
the x-axis and the outcome variable on the two variables of interest, we can create their scatter plot to get a
y-axls.

sense of how they relate to each other:
## create scatter plot

[

co$gdp_change
150 200 250
' 1 L
S

100
El

5
!
@3‘}%
£
8
gl
@

T T T T T T T
] 100 200 300 400 500 600
coflight_change

As expected, looking at the scatter plot, we can see that higher
vatues of night-time light change tend to be associated with
higher values of GDP change. In other words, increases in a
country’s night-time light emissions are usually accompanied by
increases in that country's GDP. The relationship appears to be
only moderately linear, however. To confirm this, we compute the
correlation coefficient:

cod 0 Py # computes correlation
## [11 04577672

The correlation between the two variables is 0.46, which is con-
sistent with what we saw in the scatter plot above.
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To predict GDP growth using the change in night-time light emis-
sions, we are interested in the following linear model:

gdpﬁa‘ngei =a+73 light_change;  (i=countries)

where:

- gdpﬁngei is the average predicted percentage change in
GDP from 1992-1993 to 2005-2006 among countries in which
the value of light_change equals light_change;

- light_change; is the percentage change in night-time light
emissions experienced by country @ from 1992-1993 +to
2005-20606.

To estimate the coefficients of the linear model, we can use the
function L} and run:

s dataoo) # s linear modet

#H#

#4# Call:

## Im{formula = gdp_change ~ light_change, data = co}
#3r Coefiicients:

## (intercept) light_change

it 49.8202 0.2546

Based on the estimated coefficients above, we write the fitted
model as:

gdpﬁnge = 49.82 4+ 0.25 light_change

Now we can use the fitted model to make predictions. Imagine,
for example, that we want to know a country’s GDP growth over a
period of 13 years but do not have the data necessary to measure
it. Suppose also that we observe that night-time light emissions
increased by 20% in that country over the same period of time.
What would be our hest guess for its GDP growth? To compute
this prediction, we plug into the fitted linear model a light_change
equal to 20:

gdp/_-c‘h_c;nge = 49.82 + 0.25 light_change
= 4982 + 0.25x20 = 54.82

Based on the fitted model, we predict that the country’s GDP
grew by an average of about 55% during the 13-year period.
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3 .. .
<, also known as the coefficient of deter-

27, also known as t

mination, ranges from 810 1 and measures

the proportion of the variation of the out

caing e explained by the model. The
highar the R7, the better the model Bis the

data,

4.6 MEASURING HOW WELL THE MODEL FiTS
THE DATA WITH THE COEFFICIENT OF
DETERMINATION, /7

Whenever we use a model to make predictions, we want to know
how well the model fits the data because a poor fit can lead to
inaccurate predictions. For this purpose, we use a statistic called
coefficient of determination, or R (pronounced r-squared). The
value of R’ ranges fram 0 to 1 and represents the proportion
of the variation of Y explained by the model. For example, we
interpret an R* of 0.8 as indicating that the model explains 80%
of the variation of Y (0.8x100=80%). Therefore, the higher the
Rz, the better the model fits the data.

In mathematical terms, R’ is defined as:

SSR _ . Mia(Yi= V)
7SS S (Yi=Y)?

where:

- S5R stands for the “sum of the squared residuals” and
measures the variation of Y not explained by the modei,
This s what we minimize by using the least squares
method when choosing the line of best fit. More pre-
cisely:

n n

SSR=13 3" = (V=¥

i=1

f=1

In other words, S5R sums the squared distances hetween
the dots and the line of best fit {shown as dashed red lines
in the top figure in the margin).

- 155 stands for “total sum of squares” and measures the
total variation of Y, explained and unexplained. This is
the numerator of the variance of Y, which, as we saw
in chapter 3, is a measure of the spread of the variable.
More precisely:

7SS = i(v,-m?)z

i=1

In other words, TS5 sums the squared distances between
the dots and the mean of ¥ (shown as dashed red lines
in the bottom figure in the margin).




Given the definitions above, we can interpret SSR/TSS as
the proportion of the variation of ¥ not explained by the
model. Therefare, 1—(SSR/TSS) is the proportion of the
variation of Y that is explained by the model.

At one extreme, when the model perfectly fits the data, the
model will produce no residuals, SSR will equal 0, and R’
will equal 1. At the other extreme, when the model does not
explain any of the vartation of the outcome variable, SSR
will equal 755, and R* will equal 0. Most situations fall
somewhere in between.

When we use a simple linear model, that is, a linear model with,
only one X variable, as is the case in this chapter, R? is also
equivalent to the correlation between X and Y squared:

R* = cor(X, Y)?

Given this definition of R, it becomes clear that the higher the
correlation between X and Y (in absolute terms), the better the
model fits the data.  As the linear association between X and
Y becomes stronger (for example, moving from the first scatter
plot in figure 4.4 to the second one), the prediction errors in
the model {the vertical distance between the dots and the line)
become smaller, and the proportion of the variation of Y explained
by the model {the value of R?} increases.

At one extreme, when the relationship between X and Y is per-
fectly linear {the correlation between X and Y equals either 1
or -1), the model explains 100% of the variation of Y (R2m12:1
and R?=(-1)>=1). At the other extreme, when there is no linear
relationship between X and Y {the correlation between X and Y
equals 0), the model explains 0% of the variation of Y (R*=0=0).
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TIP: Linear medels with only one X vari-
able are known as simple linear regres-
sion models {or just simple linear models)
to differentiate them from multiple linear
regression models, which use more than
one X variable. Linear medels with anly
one X variable are also known as bivariate
linear models because they estimate the
relationship between two variables, X and
Y ("bi” means two, and “variate” means
variable).

FIKGURE 4.4. The higher the absolute
value of the correlation between X and
¥, the higher the B? and the better the
model fits the data. For example, the car-
relation between the variables in the first
plot is 0.48, and the RZ of the model is 0.23
{0.482=0.23). By comparison, the correla-
tion between the variables in the second
plot is 0.88, and the R? of the model is
0.77 {0.88°=0.77}.
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When building predictive models, then, we look for variables that
are highly correlated with Y so that we can use them as predic-
tors. The higher the correlation between X and Y (in absolute
terms), the better the fitted linear model will usually be at pre-
dicting Y using X.

PREDICTING OUTCOMES USING LINEAR REGRES-
SION: We look for X variables that are highly correlated
with Y because the higher the correlation between X and
Y (in ahsolute terms), the higher the R* and the better the
fitted linear model will usually be at predicting Y using X.

464 HOW WELL DO THE THREE PREDICTIVE MODELS
N THIS CHAPTER FIT THE DATAY

Let's evaluate the three predictive models we fitted in this chapter.
Figure 4.5 shows the three scatter plots with their fitted lines.

) =) )
& 9 <
8 g £
8 g
&
8
cabprior_gdp coflog. prior_gdp co$light_change
FIGURE 4.5 The first model predicts They were all simple linear models, so to compute R?, we can
GDP using priar GDP. The second pre- square the correlation between the two variables of interest:
dicts the natural logarithm of GDP using
the natural logarithm of prior GDP. The ## compute R-squared for each predictive model
third predicts GDP growth using changes oy i oo in17 2 # model 1
in night-time light emissions. o [ﬂ 0.0207834

YUY model 2

> model 3

s (1] 0.2005928




We can interpret the R* of the first model as indicating that the
~linear model that uses prior GDP as a predictor explains about
98% of the variation of GDP. If we compare the R* of the first
model to that of the second (0.98 vs. approximately 1), we can
see that the fit of the model improves ever so slightly by log-
transferming hoth measures of GDP. In either case, the predictive
models appear to fit the data remarkably well.

Finally, we can interpret the R? of the third model as indicating
that the linear model that uses night-time light emission changes
as a predictor explains about 21% of the variation in GDP growth.
While this might appear to be a low R* at first, given how difficult
it is to predict GDP growth, this model is quite good in relative
terms. {Note that we should only compare R*s between models

that have the same ouicome variable because some outcomes are ¢

intrinsically harder to predict than others.)

4.7 SUMMARY

This chapter intreduced us to the linear regresston model for mak-
ing predictions. We learned how to fit a line to summarize the
relationship between a predictor and an outcome variable. Then,
we learned-how to use the fitted line to (i) predict the average
value of the outcome variable given a value of the predictor, and
(i) predict the average change in the outcome variable associated
with a change in the value of the predictor. Along the way, we
learned about prediction errors, the difference between observed
and predicted outcomes, and how te interpret the two coefficients
of a line: the intercept and the slope. We ended the chapter by
learning how to compute and interpret R? to measure how well a
model fits the data. In the next chapter, we will see how to use
the linear regression model for the purpose of estimating causal
effects. '
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RECALL: The slope refers teo the change in
the predicted outcome between two spe-
cific points on the line. in addition, the
change in a variable between two points
(initial and final) is equivalent to the dif-
ference between the value of the variable
at the final point and the value of the vari~
able at the initial point. For example:

A? = ?ﬁnat — Yiaitial

TIP: Based on the formula in detail below,
we can make the following approximations:

(109 (Vi) — 10g{ Yima}] 100 =
NG

= x 100
y.in‘nial

2

{iug(era;) - log(Xgnma{)] % 100

AX
Xin'tﬁal

~

= 100

4.8 APPEMNDIX: INTERPRETATION OF THE
SLOPE IM THE LOG-LOG LINEAR MODEL

in the log-log linear model, both the outcome and the predictors
have been log-transformed:

log(¥) = & + Flog(X)

Since we are interested in the interpretation of E let's start with
the formula for the change in the predicted outcome between two
points on the line:

[Og(Yﬁnal) - 109 lnmat {Q"Jf"ﬁ {09 Xﬁnal)] {ﬁ"h/ﬁ’\ 109 (}(‘lnit'lal)j[
—- o+ 5 log(Xﬁnai) )6 109( mmal)

= E [log(Xﬁna[) - 10§(Xinlt'tal)}

ii

If we multiply both sides by 100, we arrive at:

[t0g{¥ina)t0g(Vigzat)| 100 = B [tog (Xinat)~ 10 Xiat)| 100

Now, if we use the approximations shown in the TIP in the margin,
the formula becomes:

9Yx100z§

initial initiat

x 100

where:

- A?/Tﬁmﬁalxmo is the predicted percentage change in the out-
come variable

- E is the estimated slope coefficient

- DX/ Xinitiat * 100 is the percentage change in the predictor.

Civen the formula above, if the predictor increases by 1 percent
{that is, AX/Xiniax100=1), then the outcome is predicted to
increase by 8 percent:

x 100 == Ax1 =~ B

initial

Putting it all together, in the log-log model, the estimated slope
coefficient 2 is the predicted percentoge change in the outcome
associated with an increase in the predictor of 1 percent.
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The difference between the natural logarithms of two values in a variable is approximately equal to
the percentage change between those two values in that variable, when the distance between the
two values is relatively small. Here is the math:

[log(xﬂnal) —log ()(mitial):l x 100 =

— {109(X1ma1~|"ﬁx) - log()qnmai)] x 100

Xinlti.al
r X
= ilog (X‘mmal (1 + o )) —log (Xinmal)] x 100

)<'miﬁai

r AX
- LOQ (Xlnitlai + Xin‘ttial‘“““"“) - E-Og(x'mma[)} x 100

r AX
= Log()(miﬂal) + lOg (1 +

Xinttial
AX
=log |1+ x 100
d ( )(iniﬁal)
AX

3 x 100

) - lOg(X'miﬁal)] x 100

initial

because Xinat = Hnital T AKX

Ninisiat =
Yoo
“Ninitial

because

because tog(AxB) = log(A} +log(B)

because log{1+A) ~ A when A is small




126 CHAPTER 4

4.9 CHEATSHEETS

A.9.1 CONCEPTS AND MOTATION

predictor

outcome variable

{Y)

predicted cutcomes
(Y)

observed outcomes

(Y)

prediction errors
@

linear model

fitted linear model

variable that we use as the basis for our
predictions; predictors are also known as
independent variables

variable that we are trying to predict
based on the values of the predictor(s);
outcome variables are also known as
dependent variables

Eronounced Y-hat; values of ¥ we predict
ased on (i) the fitted model that

summarizes the relationship between X <
and Y, and (ii} the observed values of X

observed values of Y, in contrast with
predicted values of Y, which are
estimated, not observed

pronounced epsilon-hat; also known as
residuals; difference between the ohserved
outcomes and the predicted outcomes:

G=Y Y
for each observation, this difference is

equivalent to the vertical distance
between the dot and the fitted line

also known as simple linear regression
model, simple linear medel, and bivariate
linear model; theeretical model that we
assume reflects the true relationship
between X and Y

Yiz= a4+ X+
where:
- Y; is the outcome for observation i
- o is the intercept coefficient
- {3 is the slope coefficient
~ X; is the value of the predictor for

ebservation J

- ¢ is the error for observation |

also known as fitted simple linear
regression model and fitted simple linear
model; line fitted to the data to summarize
the relationship between X and ¥

Yi=a+ X
where:
- Y} is the predicted outcome for
ohservation 7
- & is the estimated intercept coefficient

- Bis the estimated slope coefficient
- X; is the value of the predictor for
observation §

when trging to predict a country's current
GDP based on prior GDP, the predictor is
prior GDP

when trying to predict a country's current
Y g p Y

GDP based an prior GDP, the outcome
variable is current GDP

{(see computing Y based on X below)

(see prediction errors below)

if the observed outcome equals 5 and the
predicted outcome equails 3, the prediction
error equals 2 .

§=5-3=2

Yi=2-3Xi+¢

Yi=2-3X

CORTNUeS o next page.




48,1 CONCEPTS AND NOTATION (CONTINUED)

estimated intercept
(@)

estimated slope

(B

computing Y based
on X

computing AY
associated with AX

pronounced alpha-hat; estimated
coefficient of the fitted line that specifies
the vertical location of the line

it is the ¥ when X=0

unit of measurement of &:

- i ¥ is non-binary: in the same unit of
measurement as Y

- if ¥ s binary: in percentages {aiter
multiplying the result by 100}

pronounced beta-hat; estimated coefficient
of the fitted line that specifies the angte,
or steepness of the line; it equals the
change in the predicted outcome divided
by the change in the predictor between
two points on the line (“rise over run”)

it is the AY associated with AX=1

interpret as:

- an average increase in Y if positive
- an average decrease in Y if negative
- no average change in Y if zero

unit of measurement of g

- if Y is non-binary: in the same unit of
measurement as Y

- if Y is binary: in percentage points
{after multiplying the result by 100)

plug the value of X into the fitted linear
model: N R
Y=0a+#AX
unit of measurement of ¥:
- if Y is non-binary: in the same unit of
measurement as Y

- it Y is binary: in percentages (after
multiptying the result by 100)

plug the value of AX inte the formula
below: R

AY = FHX
interpret as:
- an average increase in Y if postiive
- an average decrease in Y if negative
- no average change in Y if zero

unit of measurement of AY:

- {if Y is non-binary: in the same unit of
measurement as Y

- U Y is binary: in percentage points
{after multiplying the resutt by 100)
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if ¥Y=2-3X:
the estimated intercept, @&, is 2

when X equals 0, we predict that Y will
egual 2 units, on average

if ¥ =2-3X:
the estimated slope, E, is -3
when X increases by 1, we predict an

associated decrease in Y of 3 units, on
average

if ¥=2—3X and X=2:
Vo2 —3x2=-4

when X equals 2, we predict that Y will
equal -4 units, on average

it ¥=2-3X and AX=2:
AY = —3x2 = -6
when X increases by 2, we predict an

associated decrease in Y of 6 units, on
average

continues on next page.
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fitted

CHAPTER 4

tog-leg linear

model

R? or coefficient of
determination

e

fitted linear model in which both ¥ and X if log(Y) =2+ 3log(X):
have been log-transformed; in this model,

we interpret the slope coefficient as the the estimated slope, B, is3
predicted percentage change in the
outcome associated with an increase in when X increases by 1%, we gredlct an
the predictor of 1 percent associated increase in Y of 3%, on

I " average

log(Y) =& + B log{X}
pronounced r-squared; statistic that if the R* of & model equals 0.80, it means
measures the proportion of the vartation of  that 80% of the variation of the outcome
the outcome variable explained by the variable is explained by the model

modei
it ranges from O to 1

the higher the R?, the better the model
fits the data

in the simpie linear model:
R = cor(X,Y)?

when building predictive models, we look
for X vartables that are highly correlated
with Y because the higher the correlation
between X and Y (in absolute terms), the

higher the R? and the better the fitted
linear model will usually be at predicting
Y using X

fits a linear model

adds a siraight line to the to add the fitted line, we AT L E R T S P e

formula of the type ¥ -~ %, 44t both of these pleces of code fit
where Y identifies th the same linear model:

outcome variabte and X
identifies the X variable

optional argument st
specifies the object where the
dataframe is stored;
alternative 1o using % for
each variable

most recently created specify as the main argument # ;ﬂsforl;?s ﬁ&ed Hr-}@....‘lﬁ-t-o an\ .ij;.d.
graph the object that contains the named fit
output of the i1} function;

computes the natural what we want to compute the

logarithm

{for other uses, see page 97) .00

# adds the fitted line to the mest
recently created graph

natural logarithm of




