5. ESTH
CAUSAL EFFECTS

In chapter 2, we learned how to estimate average causal effects
using data from randomized experiments. Here, we learn how to
estimate them when we cannot randomly assign the treatment and
instead have to rely on observational data. As an illustration, we
estimate the causal effects of Russian TV reception on the 2014
Ukrainian parliamentary election.

5.1 RUSSIAN STATE-CONTROLLED TV
COVERAGE OF 2014 UKRAINIAN AFFAIRS

Ukraine became independent from the Soviet Union in 1991,
Since then, attitudes toward Russia have often been a point
of contention. For a long time, the Ukrainian population and
political parties were divided into pro-Russian and anti-Russian.

Leading up to the 2014 Ukraintan elections, Russia and Ukraine
{which, at the time, was governed by a party with an “anti-
Russian” agenda) were in fierce political and military conflict.
Russian state-controlled TV coverage of the conflict, and of the
issues at stake in the Ukrainian elections, was intense and one-
sided. For instance, the coverage deemed the Ukrainian govern-
ment illegitimate and claimed that the revolution that brought it
to power had been organized by foreign countries. Such cover-
age was aired not only in Russian territory but also in parts of
Ukraine. Some Ukrainians living close to the border received the
signal, and thus, could be exposed to pro-Russia propaganda.

In this chapter, we estimate the effect of Russian TV reception on
Ukraine’s 2014 parliamentary election. We do so at two levels.
First, we analyze individual-level survey data to estimate the
impact on an individual's propensity to vote for a pro-Russian
party. Second, we analyze aggregate-level data to estimate the
effect on the vote share of pro-Russian parties at the precinet level.
In both cases, we focus on areas close to the Russian border.

Based on Leonid Peisakhin and Arturas
Rozenas, “Electoral Effects of Biased
Media: Russian Television in Ukraine,”
American Journal of Political Science
62, no. 3 (2018): 535-90. To simplify the
analyses, we consider that a signal
strength of 50 dBuV or above provides
reception, and we limit the number of
potential confounders.
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RECALL: The fundamental problem aof
causal inference is that we can never
observe the counterfactual cutcome. Yet
to infer causal effects, we need to compare
the factual outcome with the counterfac-
tual outcome.

RECALL: Observational data are data col-
lected about naturally occurring events,
where researchers do not assign treatment.
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FIGURE 5.1. Representation of the causal
relationships between the confounding
variable, Z, the treatment variable, X, and
the outcome variable, ¥. (Recall, we rep-
resent a causal relationship with an arrow;
the direction of the arrow indicates which
one of the variables affects the other.)

5.2 CHALLENGES OF ESTIMATING CAUSAL

As we discussed in chapter 2, to estimate causal effects, we muyst
find or create a siivation in which the treatment and control
groups are comparable with respect to all the variables that might
affect the outcome ather than the treatment variable itself. Only
when this assumption is satisfied can we use the average fac-
tual or observed outcome of one group as a good estimate of the
average counterfactual outcome of the ather group.

As we have already seen, in randomized experiments, we can rely
on the random assignment of the treatment to make treatment
and control groups, on average, identical to each other in terms
of all observed and uriohserved pre-treatment characteristics. But
what happens when we cannot conduct a randomized experiment
and have to analyze observational data instead? We can no
longer assume that treatment and control groups are compara-
ble. To estimate causal effects using observational data, we have
to first identify any relevant differences between treatment and
control groups—known as confounding variables or confounders—
and then statistically control for them so that we can make the
two groups as comparable to each other as possible.

We begin this section by defining confounding variables. Then,
we explore why their presence poses a problem when estimating
causal effects and discuss how the randomization of treatment
assignment eliminates all potential confounders in randomized
experiments. ’

B2 CONFOUNDING YARIARLES
A confounding variablie, also known as a cenfounder, is a variable

that affects both (i) the likelihood of receiving the treatment X and
(ii) the outcome Y.

In mathematical notation, just as we represent the treatment vari-
able as X and the outcome variable as Y, we represent a potential
confounding variable as Z. The diagram in figure 5.1 shows
the causal relationships between these variables. Note that the
arrows between Z and X and between Z and Y both originate
from Z, indicating that changes in Z affect the values of X and
Y but not the other way around.

Z

7N

X—= Y
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Let's lock at a simple hypothetical example to get a better sense
of how this works. Suppose we are interested in the average
causal effect of attending a private school, as opposed to a public
one, on student performance. Given the goal of our research:

_ the treatment variable, X, is a binary variable indicating
whether the student attended a private school {call it private
school)

_ the outcome variable, Y, is student performance on a standard-
ized test such as the SAT (call it test scores).

i we are collecting data from the real world, where children attend
the school their parents choose, can we think of any variable that
affects both (i) the likelihood of attending a private school and
(it) student performance on a test? In other words, can we think
of a confounding variable, Z7

One potential confounding variable is family wealth. Given that
private schools require that students pay tuition, private school
students are likely to come from weatthier families than public
school students. Thus, family wealth affects the likelihood that a
student attends a private school.

family wealth — private school

Family wealth also affects the likelthood that a student receives
after-schoot help such as one-on-one tutoring, which, in turn, will
improve performance on standardized tests.

family wealth — tutoring —+ test scores

Thus, since family weolth affects both private school and test
scores, it is a confounding variable.

family wealth

AN

private school — test scores

502 WHY ARE CONFOLINDERS A PROBLEMY

Why does the presence of a confounder pose a problem when esti-
mating causal effects? Because confounders obscure the causal
relationship between X and Y.

Returning to the example above, if we observed that, on average,
private school students perform better on tests than public school
students, we woutd not know whether it is because they attended
a private school or because they came from wealthier families

OBSERVATIONAL DATA
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RECALL: When we speak of a *high
degree of correlation,” we mean that the
cosrelation coefficient is high in absolute
terms, regardless of its sign.

heat

N

ice cream drownings

that could afferd te provide them with after-school help. In other
words, if we were to calculate the difference in average test scores
between the two groups {the difference-in-means estimator), we
would not know what portion of this difference, if any, could be
attributed to the treatment (attending a private school) and what
portion was the result of the confeunding variable {coming from a
wealthier famity).

in the presence of cenfounders, correlation does not necessarily
imply causation. Just because we observe that two variables are
highly correlated with each other does not automatically mean
that one causes the other. There could be a third variable—a
confounder--~that affects both variables.

in the extreme, by affecting both X and Y at the same time,
confeunding variables might create a completely spurious rela-
tionship between X and Y, misleading us into thinking that X
and Y are causally related to each other when, in fact, there is
no direct causal link between the two.

Z

PN

X Y

For example, ice cream sales and the number of drownings are
positively correlated with each other. When we observe a larger
number of ice cream sales, we usuatly also observe a larger num-
ber of drownings. That does not mean that eating ice cream
causes one to drown. There is an obvieus confounder: heat.

When it is hot, people are more likely to eat ice cream, and
they are also more likely to go swimming, which might sadly
lead to some drownings. The presence of the confounder, heat,
then, makes ice cream sales and number of drownings positively
correlated with each other. As far as we know, however, there
is no direct causal link between them. Eating ice cream does
not make one more likely to drown. (Note the lack of a causal
tink/arrow between ice creum and drownings in the diagram in
the margin.)

Not all cases are this extreme. Typically, there is a causal link
between the treatment and the outcome, but the presence of a
confeunder makes it difficult for us to estimate the causal effect
of X on Y accurately (as we saw in the example of the effect of
attending a private school on student test scores).

In short, when there is a confounding variable Z affecting X and
Y, we should not trust correlation as a measure of causation, and
thus, we cannot use the difference-in-means estimator to estimate
average causal effects.

e




IN THE PRESENCE OF CONFOUNDING VARIABLES:
Treatment and control groups are not comparable, cor-
relation does not necessarily imply causation, and the
difference-in-means estimator does not provide a valid
estimate of the average treatment effect.

Note that in order for a variable to be considered a confounder,
it has to affect hoth (i) the likelihood of heing treated and (ii) the
outcome. [f it affects only one, it is not a confounding variable,
and therefore, its presence does not complicate the estimation of
causal effects. (See scenarios | and Il in figure 5.2))

v Vv v
X ——— Y X e Y X —r— Y
Scenario | Scenario 1 Scenarie

For example, perhaps students who are raised Catholic are more
likely to attend a private school. As long as being raised Catholic
does not also affect test performance, it does not constitute a
confounder (Scenario b).

Similarly, perhaps students who get more sleep perform better
academically, but if sleeping more doesn't affect the likelihood of
attending a private school, then it is not a confounding variable
(Scenario ).

Also, mechanisms by which the treatment affects the outcome are
not confounders (Scenario Ill). For example, private schools might
have smaller classes than public schools, and smaller classes may
improve student performance. The use of smaller classes in private
schools is not a confounder but may be one of the mechanisms
by which private schools improve student performance. One easy
way of seeing this distinction is by thinking about the direction
of the causal relationships. A confounder causally affects the
treatment and outcome rather than the other way around.

5.2.3 COMFOUNDERS 1IN RANDOMIZED EXPERIMENTS

Why don't we have to worry about confounders in randomized
experiments? Randomization of treatment assignment eliminates
all potential confounders. It ensures that treatment and control
groups are comparable by breaking the link between any potential
confounder and the treatment.
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FIGURE 5.2. Representetion of scenar-
ios where the variable V, despite its being
causally linked to X, or Y, or both, is not
a confounding variable.

raised Catholic
private school ~—— test scores

sleep

private school —— fest scores

small class

private school ——» test scores
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family wealth

AN

private school ——— fest scores

Let's return to the example above, where we were interested in the
causal effect of attending a private school on student performance.
As discussed, if parents choose the school their children attend,
a potential confounding variable is fomily wealth.

f we are designing our study and want to ensure that there are
no confounders, how should we decide who attends and does not
attend a private school? We can flip a coin (or use any other
method of random assignment) to determine which students attend
a private school and which attend a public school. If, for example,
there were more applicants than open seats in a private school
voucher program, we could ensure that there would be no con-
founders by allocating the vouchers through a method of random
assignment such as a lottery.

family wealth

.

lottery ———— private school —— test scores

Now, students from non-wealthy families would be as likely as
students from wealthy families to receive the voucher, and thus,
attend a private school. In other words, by assigning students
to attend a private school with the flip of a coin, we break the
link between family wealth and private school. As a result, family
wealth is no longer a confounder, since it no longer affects the
probahility of receiving the treatment {although it continues te
affect the outcome).

In general, by assigning the treatment at random, we ensure that
nothing related to the outcome is also related to the tikelihood of
receiving the treatment, including factors that we cannot observe
such as student aptitude or motivation. Random assignment of
treatment, then, eliminates any potential confounders. This is
why in chapter 2 we stated that by randomiy assigning treatment,
we ensure that treatment and control groups have identical pre-
treatment characteristics, on average.

WHY ARE THERE NO CONFOUNDING VARIABLES IN
RANDOMIZED EXPERIMENTS? By randemly assigning
treatment, we break the link between any potential con-
founders and the treatment variable, thereby eliminating all
potential confounding variables.

This is the reason randomized experiments are regarded as the
gold standard for establishing causal relationships in many sci-
entific disciptines. Randomization of treatment assignment makes
the estimation of valid causal effects relatively straightforward.
Att we need to do is compute the difference-in-means estimator.
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5.3 THE EFFECT OF RUSSIAN TV ON
UKRAINIANS' VOTING BEHAVIOR

In this section, we learn how to estimate average treatment effects
using observational, as opposed to experimental, data. As our
running example, we study the effects of receiving Russian TV
an the voting behavior of Ukrainians in the 2014 parliamentary
election. In particular, we analyze data from a survey conducted
a few months after the election on a randem sample of Ukrainians
living in precincts within 50 kilometers {(about 31 miles) of the
Russian border. {See figure 5.3))

FIGURE 53. The precincts studied are
within 50 kilometers of the border with
Russia (shown in black).

'] kylv
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The dataset is provided in the file “UA_survey.csv”. Table 5.1
shows the names and descriptions of the variables included.

variable description TABLE 5.1. Description of the variables in
- - — - the UA_survey dataset, where the unit of
russtan_tv identifies  whether the respondent’s observation is respondents.

precinct receives Russian TV: 1=there is
reception or O=there is no reception

pro_russion_vote  identifies respendents who reported having
voted for a pro-Russian party in the 2014
parliamentary election: 1=voted for a pro-
Russian party or O=did not

within_25km identifies whether the respondent’s
precinct ts within 25 kilometers of the
Ukraine-Russia border: 1=it is within 25
kilometers of the border or O=it is not

The code for this chapter's analysis can be found in the “Obser-
vational.R" file. As always, we begin by reading and storing the
data (assuming we have already set the working directory):
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RECALL: i the DSS folder is saved
directly on your Desktop, to set
the workLng directory, you must run
'Lf you have a

Mac aﬂd
if you have a Windows computer (where
user is your own username). |f the DSS
folder is saved eisewhere, please see
subsection 1.7.1 for instructions or how
to set the working directory.

RECALL: Simple linear modets use only
one X variable to predict Y.

3 3 reads and stores data

To get a sense of the dataset, we look at the first few observations:

i {uas) # shows first observations

## russian_tv pro_russian_vote within_25km
A 1 ¢ 1
#HA 2 1 1
HAHE S O
P 4 g
#HHS g
##H 6 1

fun T wn B - B e BEES

0
1
1
0

Based on table 5.1 and the outpui above, we learn that each
observation-in the dataset represents a respondent, and that the
dataset contains three variables:

- russian_tv is a binary variable that identifies whether the
respendent’s precinct received Russian TV

- pro_russion_vote is a binary variable that identifies whether
the respondent reported having voted for a pro-Russian party
in the 2014 Ukrainian parliamentary election

- within_2Z5km is a binary variable that identifies whether the
respondent’s precinct is very close to the border with Russia
(defined as within 25 kilometers).

We interpret the first observation as representing a respondent
who lived in a precinct that received Russian TV, did not vote for
a pro-Russian party, and lived in a precinct within 25 kilometers
{km} of the border.

To find the total number of observations in the dataset, we run:

# provides dimensions of dataframe: rows, columns

4 [(1]358 3

The dataset contains information for 358 survey respondents.

5.1 USING THE 5MPLE LINEAR MODEL TO COMPUTE
THE DiFF &Q%,N{..i:,m%?\\ SMEANS ERTIMATOR

In this subsection, we learn to fit a simple linear model that pro-
duces an estimated coefficient that is equivalent to the difference-
in-means estimator. This procedure is a stepping stone toward
fitting a more complex model in which we estimate an average
causal effect while statistically controlling for confounders.

While we use the same statistical method as in the previous chap-
ter, we do so with a different goal in mind. In chapter 4, we fitted
a linear model to predict a quantity of interest, that is, to predict




the outcome Y given a value of the predictor X. In this chapter,
we fit a linear model to explain a quantity of interest, that is,
to estimate the causal relationship between the treatment X and
the outcome Y. (Recall, X denotes the predictor when we are
making predictions, but it denotes the treatment variable when
we are estimating causal effects.) As we will soon see, the goal
of the analysis does not affect the mathematical underpinnings of
the model {the method used to fit the line and the mathematical
definitions of the coefficients remain the same), but it does affect
the substantive interpretations of the coefficients.

Let's analyze the UA_survey dataset as an example. Here, we
are interested in estimating the average causal effect that receiv-
ing Russian TV had on a respondent’s probability of voting for a
pro-Russian party in the 2014 Ukrainian parliamentary election.
In other words, we are interested in the causal link between rus-
sian_tv and pro_russian_vote, where russion_tv is the treatment
variable and pro_russion_vote is the outcome variabie.

Russian TV reception — pro-Russian vote

Can we use the difference-in-means estimator fo estimate this
average treatment effect? The information contained in this
dataset does not come from a randomized experiment, but rather
from naturaltly occurring events. The reception of Russian TV was
not randomly assigned to different precincts. Instead, Russian
TV reception was determined by factors such as the terrain and
distance between the precinct where the respondent lived and
the Russian TV transmitters. The data we are analyzing are
therefore observational, not experimental.

Having said that, while the factors that determined Russian TV
reception were outside the researchers’ control, one could argue
that they produced an “as-if-random” variation of treatment that
had nothing to do with the determinants of individual voting
behavior. For example, small differences in terrain affected Rus-
stan TV reception but probably did not affect voting behavior
directly. For now, then, we assume that the respondents who
received Russian TV were similar in all relevant characteristics
to those who did not and use the difference-in-means estimator
to estimate the average treatment effect. (Later, we will see what
happens when we relax this assumption.)

In the running example, to compute the difference-in-means esti-
mator [just as we did in subsection 2.5.3), we run:

#4+ calculate the difference-in-means estimator

#4 1] 0.1197130
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RECALL: The difference-in-means estima-
tor is defined as the average cutcome for
the freatment group minus the average
cutcome for the control group:

¥ treatment group ™ Y contrel group

It produces a valid estimate of the average
treatment effect when freatment and con-
trol groups are comparable, that is, when
there are no confounders present.

RECALL: In R, calculates the

mean of a varitable and |- is the oper-
ator used to extract a selection of
ohservations from a variable. Example:
maand ceg Fdereth van ) caleu-
lates the mean of the observations of the
variable var? for which the variable var?
equals 1.
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RECALL: The difference-in-means estima-

tor is measurad in:

- the same unit of measurement as Y, if
Y is non-binary

- percentage points (after multiplying the
output by 100), if ¥ is binary.

Here, since pro_russian_vote is binary, the

estimator is measured in percentage points

{after multiptying the output by 100).

RECALL: In this bock, we define a treat-
ment variable, X, as binary and identifying
receipt of treatment:

1 if individual i received
the treatment
' 0 if individual 7 did not receive
the freatment

Based on this output, we would write the following conclusion
statement: Assuming that respondents who received Russian TV
were comparable to those who did not, we estimate that receiving
Russian TV increased a respondent’s probability of voting for a
pro-Russian party by 12 percentage points, on average.

As we will see next, we can arrive at the same estimate by fitting
a line where X is our treatment variable and Y is our outcome

variable of interest. Then, the estimated slope coefficient {§) is
numerically equivalent to the difference-in-means estimator.

TO COMPUTE THE DIFFERENCE-IN-MEANS ESTIMA-
TOR: We can etther

(8) calculate it directly, or

{b) fit a simple lirear model where Y is our outcome vari-
able of interest and X is the treatment variable. In this
case, the estimated slope coefficient {3} is equivalent to
the difference-in-means estimator.

Recall that the formula of the fitted line is:

Y =a+pX

where the estimated slope coefficient (3} equals the change in the
predicted outcome associated with a one-unit increase in X.

When X is the treatment variable, a one-unit increase in X occurs
when X changes from 0 to 1, since those are the only two val-
ues that the treatment variable can take. This increase in X is
eguivatent fo changing from not receiving the treatment (X=0j to
receiving the treatment (X=1}. The value of E is, therefore, the
estimated average change in the outcome variable (A?) associ-
ated with the change from the control condition to the treatment
condition, also known as the difference-in-means estimator. (See
the formula in detail below for a step-by-step explanation.)

As we learned in chapter 4, the estimated slope coefficient

equals the change in Y associated with a one-unit increase
in X:

B=AY (if AX=1)




The change in Y can be calculated as ?ﬁnal o %nmag:
B = Yino~ Vst {If AX=1)

When the X is the treatment variable, a one-unit increase
in X is equivalent to changing from the contrei group {X=0}
to the treatment group (X=1). This makes the contrel group
the initial state, and the treatment group the final state:

—~

= Yireatment group — Tcontrol group

)

Finally, recall that Y is an average predicted value. In this
case, it turns out that the Y's are exactly equal to the Ys
for their respective groups. The estimated slope coefficient
is, then:

6 = Yireatment group ™ ¥ controt group

When in a fitted linear model the X variable is the treatment
variable, then the estimated slope coefficient S is numeri-
cally equivalent to the difference-in-means estimator.

Now, let’s take a mament to figure out the substantive inter-
pretation of E in this model. As we just saw, E is equivalent
to the difference-in-means estimator, which, under certain condi-
tions, produces a valid estimate of the average treatment effect,
defined as the average change in the outcome variable coused
by a change in the treatment variable. As a result, when inter-
preting 7 in a linear model where X is the treatment variable,
we use causal as opposed to predictive language. We interpret
the value of 3 as the estimated change in the outcome variable
caused by, not just associated with, the treatment. The valid-
ity of this causal interpretation depends on the extent to which
the treatment and control groups are comparable, that is, on the
absence of confounding variables.

INTERPRETATION OF THE ESTIMATED SLOPE COEF-
FICIENT IN THE SIMPLE LINEAR MODEL:

- By default, we interpret B using predictive language: It
is the AY associated with AX=1,

- When X is the treatment variable, then E is equivalent to
the difference-in-means estimator, and thus, we interpret
B using causal language: it is the AY caused by A X=1
{the presence of the treatment). This causal interpretation
ts valid if there are no confounding variables present, and
thus, the treatment and control groups are comparable.

OBSERVATIONAL DATA
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RECALL: This medel uses the frue values
of o, 4, and ¢ (that is, without the hats)
because it is the theoretical model that
we assume reflects the true relationship
between X and Y. Since we do not know
these values, we have to estimate them by
fitting the model to the data.

RECALL: im{; fits a linear model. It
requires a formula of the type ¥ - X
To specify the object where the dataframe
is stored, we can use the optienal argu-
ment ar the & character. Exam-
ples: - L duloor

RECALL: The fitted model uses the esti-
mated coefficients, & and 2, but it does not
include ¢ (the residuals or error terms).
For every value of X, the fitted model pro-
vides an average value of Y, that is, the

value of ¥ on the line.

RECALL: The estimated slope coefficient,

,§. is measured in:

~ the same unit of measurement as Y, if
Y is non-binary

- percentage points (after multiplying the
output by 100), if ¥ is binary.

Here, since pro_russian_vote is binary,

s measured in percentage points (after
multiplying the cutput by 100).

Turning back to the running example, given that our treat-
ment variable is russion_tv and our outcome variable is
pro_russian_vote, the linear model we are interested in is:

pro_russign_vote, = o+ 3 russian_tvi + ¢ {i=respondents)

where:

- pro_russian_vote; is the binary variable that identifies whether
respondent /i voted for a pro-Russian party in the 2014
Ukrainian partiamentary election

- russiagn_tv; is the treatment variable, which indicates whether
the precinet where respondent 7 lives received Russian TV

- ¢ is the error term for respondent /.,

To fit the linear model to the data, we use the &

#*

HH#

#4 Call:
## Im{formula = pro_russtan_vote ~ russian_tv, data = uas)
HH

## Cosfhicients:
## (intercept)
HAE 0.1709

russian_ty

0.1181

Based on the output, the fitted linear model is:

prawrm_vote = 017 -+ 012 russian_tv

In this type of analysis, we typically go straight to the interpre-
tation of 3, since that is the coefficient that helps us estimate the
average treatment effect.

How should we interpret E:O.TZ? The value offﬁ\ equals the AY
associated with AX=1, and because here russian_tv {the X vari-
able in the model) is the treatment variable, 7 is also equivalent
to the difference-in-means estimator, (Note that the value of E is
indeed the same value we arrived at above, when we calculated
the difference-in-means estimator directly.) As a result, we inter-
pret the value of 3 as estimating that receiving Russian TV (as
compared to not receiving it} increased a respondent’s probabil-
ity of voting for a pro-Russian party by 12 percentage points, on
average. This causal interpretation would be valid if respondents
who received Russian TV were comparable to those whe did not.
{In the formula in detail below, we show how the fitted line on
the scatter plot relates to the substantive interpretation of the
two coefficients in this model.)



As shown in the scatter plot, if X is the treatment variable:

- &+ J, which is the height of the point on the line that
corresponds to X=1, can be interpreted as the average

outcome for the treatment group (Yiveatmen: group)
- @, which is the height of the point on the line that cor-
responds to X==0, can be interpreted as the average

outcome for the contral group {Y cantrol group)

- E which is the difference between these two heights,
is then equivalent to the difference-in-means estimator
(Ytreatment group Ycontroi group)-

—y

0_russian_voie

uas$pr

0.5

0.0 0.5 1.0

uas$russian v

In the running example:

- B+ B =029; indicates that 29 percent of the respon-
dents who lived in a precinct with Russian TV reception
(russian_tv=1) voted for a pro-Russian party

- @=0.17; indicates that 17 percent of the respondents
who lived in a precinct without Russian TV reception
(russian_tv=0) voted for a pro-Russian party

- E:O.’I 2; estimates that receiving Russian TV increased
the probability of voting for a pro-Russian party by 12
percentage points, on average {29%-—-17%=12 p.p.).

Had the UA_survey dataset come from a randomized experiment,
we could interpret the difference-in-means estimator as a valid
estimate of the average treatment effect. Here, we are working
with ohservational data, however, and so we need to worry about
potential confounders.
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TIP: When X and ¥ are hoth binary,
the scatter plot will show at most four
dots representing all observations in the
dataset. These correspond to the only
faur possible combinations of Os and 1s:
(@1), (1,%), {1.0), and {0,0). In this case,
we will not be able to discern how many
observations in the dataset have the same
combination of values because the dots
that represent them will be displayed an
top of each ather.

RECALL: The predicted outcome, ¥, and

the estimated intercept coefficient, &, are

measured in:

- the same unit of measurement as Y, if
Y is non-binary

- percentages (after multiplying the out-
put by 100), if V' is binary.

Here, since pro_russion_vote is binary,

both ¥ and & are measured in percent-

ages (after multiplying the output by 100).
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TiP: A canfounder can affect the likelihood
of receiving the treatment and the outcome
in opposite directiens. In our example, liv-
ing very close to the border might increase
the chances of recetving Russian TV but
decrease the probability of veting for a
pro-Russian party.

53.3.2 CONTROLLING FOR CONFOUNDERS USING A
RMETIPLE LINEAR REGRESSION MODEL

When dealing with ohservational data, our first step should be to
identify every potential confounding variable in the relationship
hetween X and Y. In the case at hand, we might worry about
whether living very close to the Russian border affected both (i)
the likelithood of receiving Russian TV and {ii) respondents’ atti-
tudes toward pro-Russian parties.

On the one hand, residents living very close to the horder should
be more likely to receive Russian TV, given their geographical
proximity to Russian TV transmitters (Z—X). On the other hand,
given the military fortifications along the border during this time
period, residents living very close to the border were probably
less likely to vote for a pro-Russian party {(Z— Y.

In the months leading up to the 2014 election, Ukraine prepared
to defend iiself from a possible Russian invasion by deploying
its army to the border. The Ukrainian army built military fortifi-
cations (trenches and defensive walls) at a distance of up to 10
km from the border, depending on local terrain and road access.
Within that buffer zone, the army positioned tanks and troops in
strategic locations and set up military checkpoints. Residents of a
precinct located very close to the border (such as within 25 km of
it) were either in immediate proximity of a military fortification or,
at the very least, aware of its existence, making them especially
cognizant of the threat of a Russian invasion, and therefore, more
fearful of Russian influence.

In summary, living very close to the border may affect both the
treatment and outcome variables and is, therefore, a potential
confounding variable. (See the diagram below, which represents
the causal relationships between the three variables of interest.)

living within 25 km of the border

— T

Russian TV reception —————— pro-Russian vote

fa the UA_survey dataset, the variable within_25km identifies
whether a respondent lived in a precinct within 25 km of the
border, and thus, measures our confounder. We can confirm that
the confounding variable, within_25km, and the treatment vari-
able, russian_tv, are related to each other by computing their
correlation coefficient:

#d compute correlation

w4 1) 0.8127747




Based on the output above, within_25km and russion_tv are
highly correlated with each other. As we know, this does not
necessarily mean that changes in one variable cause changes in
the other. The positive correlation, however, does mean that a
higher value of within_25km s associated with a higher value
of russion_tv, on average. Since both variables are binary,
russign_tv is more likely to equal 1 when within_25%m also
equals 1. To confirm this, we can create the two-way table of
frequencies by running:

#H# create two-way table of frequencies

FHH 0 1

#H# 0139 14
## 1 19186

As shown in the table above, among respondents living within 25
km of the border, about 91% are in a precinct that receives Russian
TV {186+{19-+186)=0.91). In contrast, among respondents living
mare than 25 km away from the border, about 9% are in a precinct
that receives Russian TV (14+(139+14)=0.09). Compared to
Ukrainians living farther away from the border, then, those living
very close to it (i) are more likely to receive Russian TV and (ii)
might have many different observed and unobserved characteris-
tics that affect thelr propensity to vote for a pro-Russian party,
including being more aware of the threat of a Russian invasion.

Once we have identified the potential confounders, the next step
is to statistically control for them by fitting a multiple linear
regression model. In contrast to simple linear regression models,
multiple lnear regression models have more than one X variable
{“multi” means more than one). The multiple linear regression
model is defined as:

Yi=a+5BXn+ o+ 5:Xp+ e
where:

- Y is the outcome for observation 7
- «a is the intercept coefficient

- each f; is the coefficient for variable X;—we use j as a stand-in
for all the different subscripts from 1 to p (j=1,...,p)

- each Xj; is the observed value of the variable X; for observation
P=1,...,p)
- p is the total number of X variables in the model

- ¢ is the error term for observation f.

Just as the simple linear model, this is a theoretical model that
is assumed to reflect the true relationship between all the X
variables and Y. Because we do not know the values of any of
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RECALL: wzisei; creates a two-way fre-
quency table when two variables are spec-
ified as required arguments. Example:
b afvnetabled) diluteariolie 2 In
the output, the values of the variable spec-
ified as the first argument in the function
are shown in the rows; the values of the

second variable are shown in the cotumns.

TIP: In this two-way tabie of frequen-
cies, very few observations are in the
off-diagonal (the diagenal running from
the upper right to the lower left). There
are only 14 respondents living mare than
25 km away from the barder wha receive
Russian TV, and there are only 19 respon-
dents living within 25 km of the border who
do not receive Russian TV. This suggests
that within_25km is a streng confounder
and that our estimate of the average freat-
ment effect will rest on this smali number
of observations.

RAultiple L

war mnde
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the coefficients {a, 81, Ja, ..., fp) or of the error terms (g;), we
have to estimate them by fitting the model to the data.

In this case, the fitted model can be written as:
Vi=a+BiXp 4+ 4 BpXi
where:

Y is the predicted value of Y for observation /

& is the estimated intercept coefficient

each EJ (pronounced beta hat sub j) is the estimated coeflicient
for variable X; (j=1,...,p)

each Xj; is the observed value of the variable X; for observation
‘,. U:‘EJ"'7P)
p is the total number of X variables in the model.

i Note that the simple regression linear model is a special case of
) the multiple linear regression model {the case in which p equals
1}. When there is only one X variable, the fitted model is a line,
and we are back in the simple linear regresston model. For any
p other than 1, the fitted model is not a line. If p equals 2, for
instance, the fitted model is a plane in a three-dimensional space.
(See example plane in the margin.)

/ Table 5.2 provides the mathematical definitions of each of the
coefficients in the multiple linear regression model. As we can
E see there, the definitions of the coefficients in the simple linear
regression model can be derived from those in the multiple linear
regression model by setting the number of X variables to one.

TABLE 5.2. Mathematical definition of mult[pie regressien Simple regression

coefficients in the multiple and simple lin- ~ = o~ -~

ear regression models. (Note: The Latin Y=a+MXi+ -+ 5X Y=a+ X

expression ceteris poribus here means T o~

holding ail other X variables canstant.) a: Y when all X;=0 @& Y when X=0
U:1 TR R p)

4 each B:, AY associated B: AY associated
with AX;=1, with AX=1

while holding all other
X variables constant
or ceteris paribus

Let’s look at the definition of each coefficient in turn:

- When there are multiple X variables, the value of & equals the
predicted value of Y when alf X variables equal zero. When
there is only one X variable, the value of & equals the predicted
value of ¥ when that one X varlable equals zero.
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- When there are multiple X variables, there will be multiple 3
coefficients (one for each X variable). The value of each 5’;
equals the predicted change in Y associated with a one-unit
Increase in X; (the X variable affected by 5)), while holding oll
other X variables constant, When there is only one X variable,
there will be only one 7 coefficient. The value of 3 equals the
predicted change in Y associated with a one-unit increase in
the one X variable included in the model. {Since there are no
other X variables here, there is no need to hold them constant.)

How can the multiple linear regression model help us estimate
average causal effects when confounders are present?

Let's assume the first X variable {X1} is the treatment variable.
The value of the corresponding estimated coefficient (E;) equals
the change in ¥ associated with the presence of the treatment,
while holding all the other X variables constant.

Now, if the model includes each potential confounding variable TIP: In this model, only the estimated cosf-
we are worried about as an additional X variable {that is, as ficient that affects the treatment variable,

« : n = . B1, can be interpreted using causal lan-
a “control variable”), then the value of B1 equals the change in guage; all others should confinue fo ba

Y caused by the presence of the treatment, while holding the interpreted using predictive language.
values of all confounding variables constant. In other words, now

we can interpret 3 using causal lanquage because statistically

controtting for all confounding variables in the estimation process

makes the treatment and control groups comparable.

To better understand this, let's look at the diagram shown in
figure 5.4, which represents the causal relationships between a
confounding variable, Z, the treatment variable, X, and the out-
come variable, Y. Intuitively, by adding Z as a control variable in
the model, we statistically hold the values of Z constant, Hock-
ing the path shown with a gray dashed line, which links X and
Y through Z. With this path blocked, no changes in Y can be
attributed to changes in Z. Since the value of 7 ts being held
constant, the only remaining source of change in Y is a change

in X.
FIGURE 5.4. Representatian of the causal
7 relationships between a confounding vari-
R able, Z, the treatment variable, X, and the
e g outcome variable, ¥, The path blacked by
X ——— ¥y adding Z as a control variabte in the model

is shown with a gray dashed line.

In other words, the difference in the average outcomes between the
treatment and control groups that remains after holding all con-
founding variables constant can now be directly attributed to their
difference with respect to the treatment {treated vs. untreated); no
other differences between the two groups are in play.

—-
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Post-treatment  variables are voriables

afferted by the freatment:

Xoen post-treolment voriable

dothe treahment 1§ ¢
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rivats vid pris

wosmicdl closs

privete schoeo!

FIGURE 5.5. Representation of the poten-
tial causal relationships between a post-
treatment variable, V, the treatment vari-
able, X, and the outcome variabie, Y. The
path blocked by adding V' as a control
variable in the model is shown with a gray
dashed line.

Does this mean that we should add to the model as many contral
variables as possible? No. For example, we should make sure
not 1o controt for posi-treatment variables, which are variables
affected by the treatment. Adding a post-treatment variable to
the model would render our causal estimates invalid because we
would be controlling for a consequence of the treatment when
trying to estimate its total effect.

To illustrate this, consider the causal diagram in figure 5.5. Sup-
pose that we control for the post-treatment variable V when
estimating the causal effect of X on Y. Doing so would block
the causal path going frem X to Y through V, which is one of the
ways by which changes in X cause changes in Y, and therefore
represents a portion of the total causal effect of X on Y.

In our current analysis, for example, we would not want to add
to the model a variable capturing the average number of hours a
respondent spent watching Russian TV each week. This is a post-
treatment variable since it is causally affected by the treatment;
its value directly depends on whether a respondent received Rus-
sian TV to begin with. Thus, controlling for this variable would
soak up part of the causal effect we are interested in estimating.

ESTIMATING AVERAGE CAUSAL EFFECTS USING
OBSERVATIONAL DATA AND MULTIPLE LINEAR
RECGRESSION MODELS. If, in the multiple linear regres-
sion model where X; is the treatment variable, we control
for all potential confounders by including them in the model
as additional X variables, then we can interpret 31 as a
valid estimate of the average causal effect of X on Y.

Now that we know how to estimate an average treatment effect
in the presence of confounders, let's return to our example. Given
that our treatment variable is russion_tv, our outcome variable is
pro_russian_yote, and our confounding variable is within_25km,
the linear model we are interested in is:

pro_russian_vote, = a + 1 russian_tv;
+ Bz within_25km; + ¢; (i=respondants)




To fit a multiple linear regressien model in R, we also use the
Ll function. As you may recall, this function requires a formula
of the type ¥ ~. ¥ when there is only one X variable. It requires
a formula of the type v - %, when there are multipte

X variables, For example, to fit the linear model above, we run:

y # fits linear model
FHA

## Call:

#4 alformula = pro_russian_vote ~ russian_tv -+
#4#  within_25km, data—uas)

H

#A# Coefficients:
#3# {intercept)
HA 0.1959

within_25km
-0.2081

russian_ty

02676

Based on the output, the new fitted tinear model is:

pro_rt};;;c;l_vate = 0.2 4 0.29 russian_tv
-0.21 within_25km

How should we interpret 3,=0.20? The value of 3 equals the
AY associated with AX;=1, while holding all other variables
constant. In addition, because the variable affecting this coeffi-
cient is the treatment variable, russign_tv, and the coenfounder we
are worried about, within_25, 'LsA'mcluded in the model as a con-
trol variable, we can interpret £ using causal language. Thus,
we interpret the value of Eq as estimating that, when we hold
living very ctose to the border constant, receiving Russian TV {as
compared to not receiving it) increased a respondent’s probabil-
ity of voting for a pro-Russian party by 29 percentage points,
on average. The validity of this causal interpretation depends
on whether living very close to the border is the only confound-
ing variable. If there are ather confounders, this estimate of the
average treatment effect would not be valid.

5.4 THE EFFECT OF RUSSIAN TV ON
UKRAINIAN ELECTOGRAL OUTCOMES

In the prior section, we found that Russian TV reception was
estimated to increase a respondent’s probability of voting for
a pro-Russian party, suggesting that the propaganda aired by
Russian TV in the months teading up fo the 2014 Ukrainian par-
liamentary election may have helped parties with a pro-Russian
agenda garner more votes. In this section, we examine whether we
can find a similar causal relationship at the aggregate level. This
analysis is particularly appropriate since the treatment variable
itself (Russian TV reception) is measured at the precinct level
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403 fits a linear model. it reguires
a formuta of the type ¥

... Note that when there
is oniy cne X variable, this for-
mula becomes ¥ . x. To specify
the object where the dataframe is
stored, we can use the optional
argument <zt or the % char-
acter. Examples: P

TIP: The unit of measurement of 2; in the
multiple linear regression modet follows
the same rules as the unit of measurement
of & in the simple linear regression model.
Here, since pro_russian_vote is binary, fi]
is measured in percentage points (after
multipiying the output by 100}

RECALL: In an individuai-level analysis,
the unit of observation is individuals. By
contrast, in an aggregate-level analysis,
the unit of observation is collections of
individuals. For example, here our unif
of observation is precincts, and therefore,
each observation represents the residents
of & particular precinct.
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TABLE 5.3. Description of the variables in

the UA_precincts dataset, where the unit -

of ehservation is precincis.

RECALL: I the DSS folder is saved
directly on wyour Deskiop, to set
the working directory, you must run
gt U =% if you have a

Mac and Lizshinpiiinny
if you have a Windows computer {where
user is your own username). If the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on how
to set the working directory.

Here, we use aggregate-level data from all the precincts in three
provinces in northeastern Ukraine: Chernihiv, Sumy, and Kharkiy,
Amang the Ukrainian provinces bordering Russia, only these three
did not close their polling statiens as a result of the ongoing
conflict. These are the same provinces where the respondents to
the survey analyzed above lived.

The dataset is provided in the file “UA_precincts.csv”. Table 5.3
shows the names and descriptions of the variables included.

variable description

russtan_tv identifies precincts that receive Russian
TV: 1=there is reception or O=there is no
reception

vote share received in the precinct by
pro-Russian parties in the 2014 Ukrainian
parliamentary election {in percentages)
prior_pro_russian  vote share received in the precinct by
pro-Russian parties in the 2012 Ukrainian
parliamentary election (in percentages)
identifies precincts that are within 25 kilo-
meters of the Russian border: 1=it is
within 25 kilometers of the border or 0=it
is not within 25 kilometers of the border

pro_russian

within_25km

As always, we start by reading and storing the data (assuming
we have already set the working directory):

"1 7 reads and stores data

To get a sense of the dataset, we look at the first few observations:

3 P # shows first observations
## russian_tv pro_russian prior_pro_russian within_25km

##H# 0 27270884 2514286 i
At 2 0 68928571 35.34483 G
A 3 T 1.6944153 20.53232 4
#Hit 4 0 722688076 8447761 1
5 0 1.2820513 28.59408 0
## D 1 14285714 4558824 0

Based on table 5.3 and the output of above, we learn that each
observation in the dataset represents a precinct, and that the
dataset contains four variables:

- russian_tv is a binary variable that identifies whether the
precinct received Russian TV

- pro_russian and prior_pro_russion are the vote shares received
by pro-Russian parties in the precinct in the parliamentary




elections of 2014 and 2012, respectively (both vartables are
measured in percentages)

- within_25km 1s a hinary variable that identifies whether the
precinct is within 25 km of the border.

We interpret the first observation as representing a precinct in
Ukraine that does not receive Russian TV, where pro-Russian
parties received about 3% and 25% of the votes in the parliamen-
tary elections of 2014 and 2012, and that is within 25 km of the
border with Russia.

To find the total number of observations in the dataset, we run:

dimilvap) # provides dimensions of dataframe: rows, celumns
(1] 3589 4

The dataset contains information about 3,589 precincts.

5.4.1 USING THE SIMPLE LINEAR MODEL TO COMPUTE
THE GIFFERENCE-IN-MEANS ESTIMATOR

In this analysis, we are interested in estimating the effect that
the intense, one-sided Russian TV coverage of Ukrainian pelitics
had on the electoral performance of pro-Russian parties in the
2014 Ukrainian parliamentary election at the precinct level. Since
the treatment took place between the 2012 and 2014 elections,
we define our outcome variable as the change in the vote share
received by pro-Russian parties between these two elections.

The causal tink we are interested in is, then, between russian_tv
and pro_russian_change, where russian_tv is the treatment vari-
able and pro_russian_change is the outcome variable,

Russian TV recepiion -+ pro-Russian vote share change

Since we do not have our outcome variable of interest readily
available in the dataset, we start the analysis by creating it. The
change in the precinct-level vote share received by pro-Russian
parties between 2012 and 2014 is defined as:

pro_russtan_change = pro_russian — prior_pro_russian

To create this variable, we run:

#4 create pro-russian change varlable

OBSERVATIONAL DATA

149



150

CHAPTER 5

The new variable, pro_russion_change, is measured in percentage
points because it is the difference between two percentages. For
example, it equals -20 p.p. when a precinct’s pro-Russian vote
share dropped to 40% from 60% (40%—60%=-20 p.p.).

To get a sense of the contents of pro_russian_change, we can
create its histogram by running:

i

#9 create histogram

frequency

100 200 300 40C 500 600

L

0

—100 -B80
uap$pro_russian_change

Note that all the values of pro_russion_change are negative,
which means that in all the precincts under study, the vote share
received by pro-Russian pariies decreased between these two
elections. As a result of the conflict leading up to the 2014 elec-
tion, pro-Russian political parties lost support across the coun-
try, even in their traditional strongholds in eastern and southern
Ukraine. Our question is, then, whether Russian TV reception
caused the precinct-level vote share for pro-Russian parties to
decline by a smaller amount.

To calculate the difference-in-means estimator, we can fit a simple
linear model without any controls, just as we did in the previous
section. The linear model we are interested in here is:

pro_russian_change; = «« + 5 russion_tv; -+ ¢;  {i=precincts)

where:

- pro_russian_change; (s the percentage-point change in the vote
share received by pro-Russian parties in precinct i between the
2012 and 2014 Ukrainian parliamentary elections

- russian_tv; is the treatment variable, which indicates whether
precinct i received Russian TV

- ¢ is the error term for precinct 1.




OBSERVATIONAL DATA 151

To fit the linear model, we run:

7= fits linear mgdel

w3 Call:

## Im{formula = pro_russian_change ~ russian_tv, data=uap)
i

#7% Coetficients:

#4# ([ Intercept) russian_tv

#HE -25.140 1.783

Based on the output, the fitted linear modet is:

———

pro_russion_change = -25.15 + 1.78 russian_tv

How should we interpret 5:1 787 The value of E equals the AY RECALL: The estimated slope coefficient,
associated with AX=1, and because russion_tv {the X variable £, s measured in: _
in the model) is the treatment variable, 5 is also eguivalent to - the same unit of measurement as Y, if

he diff . R A _ Y is non-binary
the difference-in-means estimator. As a result, we interpret the ~ percentage points {after muttiplying the

value of 3 as estimating that receiving Russian TV (as compared output by 100), if ¥ is binary.
to not receiving it) increased the change in the precinct-level vote Here, since pro_russion_change is non-
share received by pro-Russlan parties by 1.78 percentage points, binary and measured in percentage points,

on average. Note that the positive sign of £ is consistent with A s also measured in percentage points.

our expectation regarding the effect of Russian TV propaganda. It
indicates that pro-Russian parties experienced smaller vote share
losses in precincis with Russian TV reception. The validity of
this causal effect estimate depends on whether the precincts that
received Russian TV were comparable to the precincts that did
not; that is, it depends on the absence of confounding variables.

MULTIPLE UNEAR REGRESSION MODEL

A confounding variable we might worry about, again, is close prox-
imity to the border. On the one hand, precincts very close to the
border should he more likely to receive Russian TV {Z—X). On
the other hand, given the military deployments along the border,
we might expect that pro-Russian parties experienced larger vote
share losses in precincts very close to the border (Z—Y).

Given that close proximity to the border (defined here as heing
within 25 km} affects both (i} the likelihood of receiving the treat-
ment and {ii} the outcome, it constitutes a confounder.

located within 25 km of the border

— T

Russian TV reception —— pro-Russian vote share change
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In the UA_precincts dataset, the variable within_25km captures
whether a precinct is within 25 km of the border, and thus, mea-
sures our confounder. We can confirm that the confounding vari-
able, within_25km, and the treatment variable, russign_tv, are
related to each other by computing their correlation coefficient;

#FF compute correlation

4 1] 05317845

Based on the output above, within_25km and russian_fv are mod-
erately correlated with each other.

Now that we have identified the confounding variable, we are
ready to fit a multiple linear regression model to estimate the
average treatment effect. Here, since the treatment variable is
russian_tv and the potential confounding variable is within_25km,
the linear model we are interested in is:

pro_russian_change; = a + Py russian_tv;
+ [z within_25km; + ¢; {i=precincts)

To fit the muttiple linear regression model above, we run:

L #E fits linear model
et
#4 Call:

## lm{formula = pro_russian_change ~ russian_tv +
#HH within_25km, data=uap)

HHH#

## Coefficients:

FEH { Intercept) russian_tv within_25km
#F -24.302 §.822 -14.614

Based on the output, the new fitted linear regression model is:

e

pro_russian_change = -24.3 + 8.82 russian_tv
-14.61 within_25km

How should we interpret 51:8.82? The value of @ equats the
AY associated with AXi=1, while holding all other variables
constant. In addition, because the variable affecting this coef-
ficient is the treatment variable, russion_tv, and the confounder
we are worried about, within_25, is /Enc[uded in the model as
a control variable, we can interpret £ using causal language.
Thus, we interpret the value of Eq as estimating that, when we
hold close proximity to the border constant, receiving Russian
TV (as compared to not recelving it} increased the change in




the precinct-level vote share received by pro-Russian parties by
8.82 percentage points, on average. If the close proximity of the
precincts to the border successfully captures the only confound-
ing variable in the relationship between our two main variables
of interest, then this is a valid estimate of the average treatment
effect.

5.5 INTERNAL AND EXTERNAL VALIDIHTY

We have already learned how to estimate the average change
in the outcome caused by the treatment. (In chapter 2, we saw
how to estimate the average treatment effect using data from a
randomized experiment, and in this chapter, we have seen how to
estimate it using observational data.) There are more issues we
must consider when conducting or evaluating a scientific causal
study, including the following two properties: (i} internal validity
and (i) external validity.

The internal validity of a study refers to the extent to which the
causal assumptions are satisfied. In other words, it reflects the
confidence we have in our causal estimates. |t asks, is the esti-
mated causal effect valid for the sample of observations in the
study? The answer depends on whether we have successfully
eliminated or controlled for all potential confounders, that is, on
whether the treatment and control groups used for the estima-
tion can be considered comparable, after statistical controls are
applied (if any are).

The external validity of a study refers to the extent to which the
conclusions can be generalized. It asks, is the estimated causal
effect valid beyond this particular study? The answer depends on
(i} whether the sample of observations in the study is representa-
tive of the population to which we want to generalize the results,
and (ii) whether the treatment used in the study is representative
of the treatment for which we want to generatlize the results.

5.5.1 RANDOMIZED EXPERIMENTS VS,
OBSFRVATIONAL STUDIES

How do studies hased on experimental data compare to those

based on observational data along these two dimensions?

When it comes to internal validity, randomized experiments have a
significant advantage over observational studies. In experiments,
the use of random treatment assignment eliminates all poten-
tial confounding variables. By contrast, in observational studies,
while we can statistically control for observed confounders, there
is always the possibility that we fail to account for unobserved
confounders.
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RECALL: tn a representative sample, char-
acteristics appear at similar rates as in the
population as a whole.
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When it comes to external validity, randomized experiments can
suffer from limitations that put them at a disadvantage compared
to observational studles. First, for ethical and logistical rea-
sons, randomized experiments are often done using a convenient
sample of subjects who are willing to participate in the study.
(For example, you have probably seen ads recruiting subjects for
experiments in exchange for money.) In some cases, then, volun-
teers come from a particular segment of the population; they may
be low-tncome and/or underemployed. In such cases, the sam-
ple of individuals would likely be non-representative of the whole
population of interest. By contrast, in observational studies, we
can usually analyze data from either the entire population or a
random selection of observations from that population.

Second, randomized experiments are often conducted in artificial
environments such as laboratories, making the treatments less
realistic, and therefore, less comparable to real-world freatments.
For example, it is not the same to watch a TV program in a
laboratory as in the comfort of your own home, where many other
things compete for your attention (phone calls, visits to the fridge,
and TV programs on other channels). By contrast, in observatienal
studies, we usuvally observe the treatment in the environment in
which we are interested.

In summary, an advantage in internal validity often comes with
a compromise in external validity, and vice versa. Studies based
on randomized experiments tend to have strong internal valid-
ity but relatively weak external validity., Observational studies
tend to have relatively weak internal validity but strong external
validity. This dynamic explains why scholars use both types of
studies to estimate causal effects; they often have complementary
strengths. Nonetheless, some studies based on experimental data
have strong external validity, and some studies based on observa-
tional data have strong internal validity. We should pay attention
to the study details when evaluating them.

The ideal research design for estimating average treatment effects
would make use of the two kinds of randomization we have seen.
It would not enly randomly select its observations from the popu-
lation, but it would alse randomly assign freatment among those
observations. (See figure 5.6 on the next page.)

Assuming that we were also able to make the treatment as real-
istic as possible, this design would create a study with strong
external and internal validity. As discussed, random sampling is
the best way to make the sample representative of the popula-
tion and, thereby, ensure strong external validity {enabling us to
generalize the results to the target population). Similarly, ran-
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dom treatment assignment is the best way to make treatment and
control groups comparable and, thereby, ensure strong internal
validity (enabling us to draw valid causal inferences).

RANDOM

SAMPLING 7  TREATMENT

BANDOM
2 TREATMENT
ASSIGNMENT

SAMPLE {nl e MG TREATMENT

POPULATION (W)

As discussed in chapter 2 and above, for ethical, logistical, and FIGURE 5.6. The ideal research design
financial reasons, few studies include both types of randomization. would make use of the twa kinds of ran-
It is useful, however, to know what the ideal research design would domization we have seen: random sam-
look like; it serves as a benchmark when designing or evaluating pling and random treatment assignment.
causal studies.

553 HOW COOD ARE THE TWO CAUSAL ANALYSED IN
THIS CHAPTER?

Let's evaluate the internal and external validitu of the two data
analyses in this chapter: (i} the individual-level analysis and {ii)
the precinct-level analysis.

How strong is their internal validity? In both analyses, receipt of
the treatment {(Russian TV reception) was determined by factors
outside of the control of the researchers, such as the terrain and
distance of the precincts to the Russian TV transmitters. Neither
study is, therefore, a vrandomized experiment. Despite the fact
that we cannot rely on the randomization of treatment assignment
to eliminate all potential confounders, we can argue that both
analyses have relatively strong internal validity.

First, once we focus on areas close to the Ukraine-Russia border
{as we do in both cases), the variation in the reception of Russian
TV plausibly yields an "as-if-random” assignment of the treat-
ment; it is influenced by tesrain and other factors that are likely
to be unrelated to the level of support for pro-Russian parties.
Second, we arguably remove any remaining differences between
the treatment and control groups by statistically contrelling for
potential confounders. In both instances, we control for being
very close to the border. If this is the only confounding variable
present, then the internal validity of the analyses ts strang.
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See Diane Whitmore Schanzenbach,
“What Have Researchers Learned from
Project STAR?" Brookings Papers on
Fducation Policy, no. 3 (2006): 205-28.

How strong is their external validity?. In the individual-level anal-
ysis, we use data from a random sample of individuals living in
the precincts in which we are interested. In the aggregate-level
analysis, we use data from all the Ukrainian precincts in which
we are interested. In addition, in both studies we observe the
treatment (that is, Russian TV reception) in its real-world envi-
ronment. As a result, if we were interested in generalizing our
results to the region from which our observations come, then, the
external validity of both studies is strong. If we were interested
in generalizing the conclusions to a different type of one-sided
televised coverage of a political event in a different region of the
world, we would have to assess to what degree the treatment and
the observations in the analyses here are representative of the
actual treatment and population of interest.

5.A.4 HOW GOOD WAS THE CAUSAL AMALYSIS 1N
CHAPTER 27

As you may recall, in chapter 2 we analyzed the STAR dataset to

estimate the effects of attending a small class on student perfor-

mance. The data came from a randomized experiment conducted

in Tennessee, where students were randomly assigned to attend

either a small class or a regular-size class.

How strong is its internal volidity? Since the treatment was
assigned at random, all potential confounding variables should
have been eliminated, making the group of students who attended
a small class similar in all aspects to the group of students
who attended a reqular-size class. Thanks to random treatment
assignment, then, the causal assumption is satisfied, and we can
be confident that the causal estimates we arrived at are valid for
the group of students who participated in the experiment. We can
conclude that this analysis has strong internal validity.

How strong is its external validity? Given the characteristics of
the study, only students from large schools in Tennessee were
able to participate in the experiment. As a result, the sample
of participating students was not perfectly representative of all
students in Tennessee. The sample was also not representa-
tive of students in the United Siates. For example, according
to Schanzenbach (2006), the proportion of African Americans was
larger in the sample than in the state overall, and the proportion
of Hispanics and Asians was smalter in the sample than in the
country as a whole. Consequently, we can conclude that, although
we do get to ohserve the treatment of interest in the real world,
the analysis has relatively weak externat validity, especially if
one wishes to generalize the study’s conclusions to all schools
and students in Tennessee or in the entire United States.




OBSERVATIONAL DATA 157

5.5.5 THE COEFFICIENT OF DETERMINATION, £

Note that at no potnt during our evaluation of the causal analyses RECALL: R?, also known as the coefficient

did we mention any of the models’ coefficient of determination, of determination, ranges from § to 1 and

or R, This statistic is of no direct relevance when estimating measures the proportion of the variation
- 2 of the outcome variable explained by the

average treatment effects. A model with a small R* might do a model. The higher the R, the better the

fine job estimating a valid causal effect, especially when the effect model fts the data,

is small and there are few {or no) confounders we need to control

for statistically. Alternatively, a model with a large R? might

estimate an invalid causal effect, especially if the confounders we

control for explain a large variation of the outcome variable, yet

controlling for them fails to make treatment and control groups

comparable.

5.6 SUMMARY

In this chapter, we returned to estimating causal effects but, this
time, using observationat data. We learned about confounding
variables and why their presence complicates the estimation of
causal effects. We saw how to fit a simple linear model to com-
pute the difference-in-means estimator and how to fit a multiple
linear model to contral for confounders. Finally, we discussed how
to evaluate causal studies based on their internal and external
validity.

The statistical method used in this chapter, fitting a linear regres-
sion model, is the same as the one we used in the previous chapter.
(Although we did not see an example of it, social scientists often
use multiple linear regression models to make predictions, and
not just simple linear regression models.) The goals of the analy~
ses, however, differ. in chapter 4, we aimed to predict a quantity
of interest, while in this chapter we aimed to explain a quantity
of interest {that is, to estimate a causal effect}.

Even though the mathematical models are the same, the role the
X variable plays in the research question, the substantive inter-
pretations of the estimated coefficients, and what we pay attention
to in the analysis depend an whether we are analyzing data to
make predictions or to estimate causal effects.

For example, when fitting a simple linear regression model to
make predictions:

- X is a predictor.
- We interpret E as the change in Y uossociated with a one-unit
increase in X.

- Since the goal is to make predictions with the smallest possible
errors, we seek predictors that are highly correlated with the
outcome variable of interest. The stronger the iinear associa-
tion between X and Y, the higher the R? and the better the
fitted linear model witl usually be at predicting ¥ using X.
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By contrast, when fitting a simple linear regression model to esti-
mate causal effects:

- X is the treatment variable.

- We interpret A as the change in Y coused by the presence of
the treatment X.

- Since the goal is to arrive at valid estimates of causal effects,
we seek to find or create situations in which the treatment and
control groups used in the analysis can he considered com-
parable, after statistical controls are applied (if any are). In
other words, we seek to eliminate or control for all potentiat
confounding variabtes.

Thus, whenever we conduct a regression analysis or evaluate one
conducted by someone else, we should keep the goal in mind.




L1

LA

corfounding variable
or confounder
(Z

fitted simple linear
regression model
where X is the
treatment variable

multipte linear
regression model

7 CHEATSHEETS

J4 CONCEPTS AND NOTATION

aiso known as an omitted variable or a
control variable; variable that affects both
{i) the likelihood of receiving the
treatment X and (ii) the outcome Y

z
X—Y
confounders obscure the causal
relationship between X and Y just
because we observe that two variables are
highly correlated with each other does not
automatically mean that one causes the

other; there could be a third variable—a
confounder—that affects hoth variahles

in the presence of confounding variables,
correlation does not necessariiy imply
causation, and the difference-in-means
estimator does not provide a valid
estimate of the average treatment effect

in randemized experiments, the
randomization of treatment assignment
eliminates all potential confounding
variables

if, in the fitted simple linear regression
rﬂodei, X is the treatment variable,

3 is equivalent to the difference-in-means
estimator, and thus, we interpret it using
causal, not predictive, language

this causal interpretation is valid if there
are no confounding variables present

linear model with mere than one X
variable; theoretical model that we
assume reflects the true relationship
between Y and multiple X variables

Yi=c+ 0 Xg -+ BpXp 6

where:

- Y} is the outcome for observation §

- o is the intercept coefficient

- each f§; is the coefficient for vartable X;
(=1, ., p)

- each Xy is the observed value of the
varlable X; for observation /
U:’IJ e 7p)

- p is the total number of X variables

- ¢; is the error term for observation §
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family wealth is a condounder in the
causal relationship between attending a
private school and test scores

family wealth

N

private school —————— tast scores

students from wealthy families are more
likely to attend a private school {family
wealth — private school); students from
wealthy families are more likely to receive
after-school help such as one-on-one
tutoring, which, in turn, will improve
performance on tests (family wealth —
tutering — test scores)

in the presence of the confounder, famil
wealth, we do not know what portion (i
any) of the observed difference in average
test performance between private and
public school students is due to the
schoots the students attend and what

ortion is due to their differing levels of
amily wealth

if X is the treatment variable and the
fitted model is ¥ =2 —3X:

we interpret § as estimating that
receiving the treatment decreases the
outcome by 3 units, on average (in the
same unit of measurement as the
difference-in-means estimator)

Yi=143Xn +5Xn+¢

confinues on next page. .
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574 CONCERPTS AND NOTATION (CONTINUED)

fitted multipte linear
regression model

fitted multiple linear
regression model
where X is the
treatment variable

post-treatment
variables

internat validity

external validity

linear model fitted to the data to describe
the relationship between Y and multiple
X variables

%ﬁa+g1xi1 +"‘+Bpxi0

where:

- \?, is the predicted cutcome for
observation i
- @ is the estimated intercept coefficient

- each f; is the estimated coefficient for
variable X; (j=1,..., p)

- each Xj; is the observed value of the
variable X; for observation i

U=1,....p)

interpretation of @: the ¥ when all X
variables equal 0

interpretation of each Ej the AY
associated with AX;="1, while holding all
other X variables constant

if. in the fitted multiple linear regression

model where X; is the treatment variable,
we control for oll potential cenfounders by
including them in the medel as additional
X variables (that is, as control variables),

then we can interpret 8 as a valid
estimate of the average causal effect of X
on Y

variables affected by the treatment:
X — post-treatment varioble

post-treatment variables should not be
added as control variables; adding a
post-treatment vartable 1o the regression
model would render our causal estimates
invalid because we would be controlling
for a consequence of the treatment when
trying to estimate its total effect

refers to the extent to which the causal
conclusions of a study are vatid for the
sample of observations in the study; it
depends on whether the treatment and
controt groups used for the estimation can
be considered comparable, after statistical
controls are applied (if any are)

refers to the extent to which the causal
conclusions of a study can be generalized;
it depends on {i) whether the sample of
ohservations is representative of the
population to which we want to generalize
the results, and {ii) whether the freatment
used in the study is representative of the
treatment for which we want to generalize
the resulis

Y =1+43X1 —5Xp

in this fitted multiple linear regression
model:

&=1; when both X; and X; equal 0, we
predict that Y will equal 1 unit, on
average

B1=3; when X increases by 1 and X
remains constant, we predict an associated
increase in Y of 3 units, on average

Bs=-5; when X3 increases by 1 and X
remains constant, we predict an associated
decrease in Y of 5 units, on average

it X7 is the treatment variahle, X3 is the
onty potential confounder, and the fitted

model is ¥ =1-+3X; +5X,:

we interpret 81 as estimating that, while
helding X5 constant, receiving the
treatment increases the outcome by 3
units, on average (in the same unit of
measurement as the difference-in-means
estimator)

if the treatment is attending a private
school and private schools have smalier
classes than public schools, then small
class is a post-treatment variable because
it is affected by the value of private school

private school — small class

when estimating the causal effect of
attending a private school, we should not
contral for class size

randomized experiments have strong
internal validity because the
randomization of the treatment assignmeni
eliminates all potential confounders;
observational studies may alse have
strong internal validity if the analysis
controls for all potential confounders

observational studies typically have
strong external validity because they often
analyze the entire target population and

observe the treatment in the environment

in which we are interested; randomized
experiments may also have sirong external
validity if they manage to use a
representative sample of subjects and
make the treatment comparable to the
real-world one




ﬁ’fs a lmear modei

variable: ¥ -~ x

when there are multtple X _

variables: v -~ X

optional argument !

specifies the abject where the

4 for

dataframe is stored;
alternative to using
each variable

when there is onlg one X
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#4# hoth of these pieces of cede fit
the same simple linear regression
model:

#3 both of these pieces of code fit

the same multiple linear regressien
model:




